
magazine

hr focus on communications technology
calculate the input impedance of tapered verticals • design toroidal tank circuits • stop blowing finals in the GLA-1000 - build a pulsed NiCad battery charger • run full power with a 3CX1200A7 amplifier • plus W1JR, W6SAI, W6MGI, and K0RYW

The Versatile 100 Watt 2 Meter Base System

For the ultimate in 2-meter communications, ICOM presents the IC-271H transcelver with a high dynamic range receiver and a 100 watt transmitter...And all the advanced functions of the latest CPU controlled radios.

Options Mount -Here

Internal
Construction

Exceptional Standard Features:

- $143.800-148.199 \mathrm{MHz}$, expandable for MARS operation
- 32 full-function Memories with lithium battery backup
- 100 Watts, fully adjustable on all modes
- Variable Tuning Steps, FM 5 KHz and 1 KHz ; SSB 10 Hz , 50 Hz and 1 KHz
- 32 built-in Subaudible Tones
- High Visibility Display
- s-Meter and Center Meter
- Scanning Systems Memories, Modes and Programmable Band
- IC-HM12 Microphone with Up/Down Scan
- $111 / 4^{\prime \prime} \mathrm{W} \times 43 / 8^{\prime \prime} \mathrm{H} \times 125 / 8^{\prime \prime} \mathrm{D}$

Optional Features. AG-25
switchable preamp, UT-15S CTCSS encoder/decoder (encoder is standard).
IC-EX310 voice synthesizer, IC-SM8 two-cable desk mic and IC-SM6 desk mic. PLUS a variety of power supplies... IC-PS30 system power supply. IC-PS15 external or IC-PS35 internal power supplies.

The IC-271A. The 25 wa IC-271A has the same outstanding featues as the IC-271H, including an intern power supply, IC-PS25.

See the IC-27IA(H) and other fine ICOM equipment your local ICOM dealer toda

What To

ook For In A

hone Patch

he best way to decide hat patch is right for you
to first decide what a atch should do. A patch ould:
Give complete control to the mobile, allowing full break in operation.
Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables (or flip switches!) every time you wish to use your radio as a normal base station.
Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.
The patch should have standard features at no extra cost. These should include programmable toll restrict (dip switches), tone or rotary dialing. programmable patch and activity timers, and front panel indicators of channel and patch status.
ONLY SMART PATCH HAS ALL OF THE ABOVE.

Now Mobile

Pperators Can
Enjoy An
Affordable
Personal Phone
Patch. . .
Without an expensive repeater.
Using any FM tranceiver
as a base station.
The secret is a SIMPLEX autopatch. The SMART PATCH.

BMART PATCH

 s Easy To Installo install SMART PATCH. onnect the multicolored omputer style ribbon cable 0. mic audio, receiver liscriminator, PTT, and rower. A modular phone ord is provided for conrection to your phone syscm . Sound simple? T IS!

With Smart patch

 You are in CONTROL … n With CES 510SA Simplex Autopatch, there's no waiting for VOX circuits to drop. Simply key your transmitter

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

> To Take CONTROL with Smart Patch - Call 800-327-9956 Ext. 101 today.

How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: "73). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter. then dial the phone number. You will now hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is con. stantly checking to see if you wish to talk, you need to simply key your trans. mitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH Is All You Need To Automatically Patch Your Base Station To Your Phone Line.

Use SMART PATCH for:

- Mobile (or remote base) to phone line via Simplex base. (see fig 1.)
- Mobile to Mubile via interconnected base stations for extended range (see fig. 2.)
- Telephone line to mobrize (or remote base).
- SMART PATCH uses SIMPLEX BASE STA. TION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES. 180 days of warranty protection. You simply can't go wrong.
An FCC rype accepted coupler is available for SMART PATCH.

KENWOOD

"Digital DX-terity!"

TS-430S
Digital DX-terity-that outstanding attribute built into every Kenwood TS-430S lets you QSY from band to band, frequency to frequency and mode to mode with the speed and ease that will help you earn that dominant DX position from the shack or from the mobile!

- Covers all Amateur bands 160 through 10 meters, as well as the new 30,17 , and 12 meter WARC bands. High dynamic range, general coverage receiver tunes from 150 kHz to 30 MHz Easily modified for HF MARS operation. - Superb interference reduction Eliminate QRM with the IF shift and tuneable notch filter. A noise blanker supresses ignition noise. Squelch. RF attenuator, and RIT are also provided. Optional IF filters may be added for optimum interference reduction.
- Reliable, all solid state design. Solid state design permits input power of 250 watts PEP on SSB. 200 watts DC on CW, 120 watts on FM (optional), or 60 watts on AM. Final amplifier protection circuits and a cooling fan are built-in.
- Memory channels. Eight memory channels store frequency, mode and band data. Channel 8 may be programmed for split-frequency operation. A front panel switch allows each memory channel to operate as an independent VFO or as a fixed frequency. A lithium battery backs up stored information.
- Programmable, multi-function scan.
- Speech processor built-in.
- Dual digital VFOs.
- VOX circuit, plus semi

Optional accessories

- PS-430 compact AC power supply - SP-430 external speaker - MB-430 mobile mounting bracket - AT-130 compact antenna tuner covers 80-10 meters, incl. WARC bands - AT-250 automatic antenna tuner covers 160-10 meters, incl WARC bands \bullet AT- 230 base station antenna tuner
- FM-430 FM unit
- YK-88C $(500 \mathrm{~Hz})$ or YK-88CN (270 Hz) CW filters - YK-88SN (1.8 kHz) natrow SSB filter - YK-88A (6 kHz) AM filter •MC-42S UP/DOWN hand mic. •MC-60A deluxe desk mic., with UP/DOWN switch - SW-2000 SWR/power meter - SW-100A SWR/power/volt meter - PC-1A phone patch - HS-4, HS-5,

TRIO-KENWOOD COMMUNICATIONS

AUGUST 1985

volume 18, number 8
T. H. Tenney, Jr., W1NLB publisher

Rich Rosen, K2RR editor-in-chief and associate publisher

Dorothy Rosa, KA1LBO assistant editor

Joseph J. Schroeder, W9JUV Alfred Wilson, W6NIF associate editors
Susan Shorrock editorial production
editorial review board
Peter Bertini, K1ZJH Forrest Gehrke, K2BT Michael Gruchalla, P.E.

Mason Lis, K K MT Ed Wetherhold, W3NON
publishing staff J. Craig Clark, Jr., N1ACH assistant publisher
Rally Dennis, KA1JWF director of advertising sales

Dorothy Sargent, KA1ZK advertising production manager Susan Shorrock circulation manager Therese Bourgault circulation cover: Anne Fleming Map details represent latest information available at presstime.
ham radio magazine is published monthly by Communications Technology, Inc. shire 03048-049 elephone: 603-878-144
subscription rates United States:
one year, $\$ 19.95$; two years, $\$ 32.95$; three years, $\$ 44.95$ Canada and other countries (via surface mail? one year, $\$ 22.95$; two years, $\$ 41.00$; three years, $\$ 58.00$:urope, Japan, Africa (via Air Forwarding Service): one year, $\$ 28.00$ All subscription orders payable in U.S. funds. via international postal money order or check drawn on U.S. bank
international subscription agents: page 122

$$
\begin{array}{r}
\text { Microfilm copies are available from } \\
\text { University Microfilms, International } \\
\text { Ann Arbor, Michigan } 48106 \\
\text { Order publication number } 3076 \\
\text { Cassette tapes of selected articles from han radio } \\
\text { are available to the blind and physically handicapped } \\
\text { from Recorded Periodicals, } \\
919 \text { Walnut Street, Philadelphia. Pennsylvania } 19107 \\
\text { Copyright } 1985 \text { by Communications Technology, Inc. } \\
\text { Title registered at U.S. Patent Office } \\
\text { Second-class postage paid } \\
\text { at Greenville, New Hampshire 03048-0498 } \\
\text { and at additional mailing offices } \\
\text { ISS } 0148-5989 \\
\text { Send change of address to ham radio } \\
\text { Greenville. New Hampshire D3048-0498 }
\end{array}
$$

ham radio

contents

12 FM repeater separation - 20 kHz Yes, 15 kHz No Chris Kelly, WD5IBS

24 calculating the input impedance of a tapered vertical
Walter J. Schulz, K30 OF
29 design a toroidal tank circuit for your vacuum tube amplifier Robert E. Bloom, W6YUY

39 VHF/UHF world: medium power amplifiers Joe Reisert, W1JR

59 stop blowing finals in the GLA-1000 amplifier
A.J. Nailer, G4CFY, and G.J. Morgan, G3ROG

67 a pulsed, constant current NiCad battery charger
Alan Lefkow, K2MWU
75 3CX1200A7 10 to 80-meter amplifier Jerry Pittenger, K8RA

90 ham radio techniques: big signals from the north Bill Orr, W6SAI

124 the Guerri report Ernie Guerri, W6MGI

126	advertisers index	120
ham mart		
and reader service	86	ham note
8	comments	110
new products		
100	DX forecaster	6
presstop		
122	flea market	27
	short circuit	

When the FCC

 changed the rules, EIMAC was preparedfor continuing HAM operations.

The FCC changed the allowable output power for linear amplifiers in amateur radio service. Hams can now run at 1500 watts PEP into an antenna. EIMAC was right there to meet requirements with its 3CX1200A7 tube.

Low-cost replacement

 for small spaces.RF cabinets of many linear amplifiers currently use the EIMAC $3-500-Z$ tubes. The new 3CX1200A7 for design takes size into consideration and, by design, is recommended as a single, low-cost replacement for a pair of EIMAC 3-500-Z tubes for new amplifier designs.

General Specifications

The EIMAC 3CX1200A7 is a highmu, compact, forced air cooled triode for zero-bias class AB2 amplifiers.

- $2.9^{\prime \prime}$ dia. x $6.0^{\prime \prime}$ long
- Plate dissipation: 1200 watts
- Glass chimney SK-436 available
- Standard EIMAC SK-410 socket available

More information is available on the new EIMAC 3CX1200A7 tube from Varian EIMAC, or any Electron Device Group worldwide sales organization.

Varian EIMAC

1678 S. Pioneer Road
Salt Lake City, Utah 84104
Telephone: 801•972-5000
Varian AG
Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: 042-23 2575

COMPLETE SYSTEM ENGINEERING ASSISTANCE

1155 TERRA BELLA, MOUNTAIN VIEW, CA 94043
(415) 968-4400 • TWX 910-379-5055

prestoop
 de W9JUV

STILL ANOTHER THREAT AGAINST 220 MHZ HAS BEEN MOUNTED by an oil exploration-related firm in Illinois. LAOAD Radio and Microwave Communications Consultants petitioned the FCC to allocate $216-220 \mathrm{MHz}$ for use as 1033 ASCB data and voice channels, AND provide a 350 kHz segment of $220-222 \mathrm{MHz}$ to be shared with Amateur Radio. Under terms of. the proposal, LAOAD would advise the ARRL of pending operations, and the League would then alert Amateurs

Little, If Any, Interference To Amateurs Would Result, the petitioner (W9GT, whose Norwegian call LAØAD inspired his company name) claims, as operations would be very shortlived and typically well removed from populated areas. However, 220 MHz users and others are very concerned that any such incursion could set a dangerous precedent for the future.

The Original Comment Period On RM-4983 Had Closed by presstime, but there has been considerable pressure to reopen it. Though the recent upsurge in interest in providing Novices with 220 MHz privileges (see below) certainly tends to diminish or at least postpone threats such as this one, it is still quite serious and should be challenged.

ARRL'S PETITION TO EXPAND NOVICE PRIVILEGES HAS RECEIVED its FCC Rule Making number, RM-5038, along with several other related petitions. In brief, the League proposal would give Novices limited 10 -meter SSB and data privileges plus full privileges (with reduced power) on 220 and 1246-1260-see July Presstop for specific details. Somewhat similar petitions filed by KC50Q include giving Techs and Novices ASCII (RM-5022) and phone (RM-5032) on part of 10 meters, some 30 meter privileges (RM-5024), and 220 MHz phone (RM-5025). The Comment period closed for KC50Q's petitions July 11 ; a date hadn't been set for ARRL's at presstime, but its cutoff date should fall sometime in late July

BROADCAST STATIONS MAY RETRANSMIT AMATEUR TRANSMISSIONS or use what they hear on the Amateur bands on the air, but any direct involvement between Amateurs and a broadcast station is expressly forbidden. In its June 7 Report and Order on BC Docket 79-47, the Commission agreed that the content of an Amateur transmission is not protected against reuse by others, but that to have, for example, an Amateur station at a broadcast studio to solicit traffic information during rush hours would be against the rules.

AMATEURS MAY BE ALMOST TWICE AS PRONE TO LEUKEMIA as the general population, a study reported June 23 by the New York Times News Service suggests. Underscoring ham radio Editor K2RR's July editorial, Washington state epidemiologist Dr. Samuel Milham, jr. found the death rate from various forms of leukemia for 1691 California and Washington Amateurs who died between 1971 and 1983 was just about twice as high as would normally be expected. The increase was in myeloid and unspecified forms of leukemia; lymphatic and monocytic forms of the disease had no higher incidence among Amateurs than among others

COMMENT DEADLINE FOR FCC'S NATIONAL REPEATER COORDINATION proposal (PR Docket 85-22) has been extended to August 15 in response to an ARRL request. The new Reply Comment date is September 30. Comments received thus far by the FCC have almost all been endorsements of the concept of national coordination, with few specific ideas on how to make it work.

VEC MAINTENANCE OF AMATEUR QUESTION POOLS WAS PROPOSED by the FCC in a Notice of Proposed Rule Making issued June 12. VEC-developed questions would have to follow the Commission's syllabus, and each pool would have to include at least 10 times the number of questions asked in that particular exam. At the same time the FCC also proposed moving up the date at which VECs may begin preparing their own exams. Comments on PR Docket 85-196 are due at the Commission by August 30, and Reply Comments by September 30.

One Regional VEC Has Already Dropped Out Of The Program, and another has said it plans to when the ARRL gets fully up to speed. Still another VEC has asked his Senator to look into the fee structure, as he feels his club isn't getting enough money for its efforts. For comparative purposes, NABER's fee for administering an exam for certification under its commercial examination program is $\$ 38$!

The FCC's August VEC Meeting In Gettysburg Had Relatively Few signed up at presstime, despite a very promising program. Planned topics include improving speed of service, decreasing paperwork errors, and improving the integrity-real and perceived-of the program. Attendees will also meet the FCC people they've been dealing with and see the FCC's licensing facilities and procedures in operation.

Volunteer Examiners Are Now Averaging About 4000 Exam Elements Monthly, compared to a high of about 2750 exams a month when the FCC was still giving exams. However, the U.S. Amateur population is still well under its March, 1983, all-time high of 414,973; latest (May 30) figures show 410,846 individual FCC-licensed Amateurs.
U.S. AMATEURS MAY FINALLY USE OSCAR 10 'S MODE 'L" TRANSPONDER, under an FCC STA issued June 12. The Special Temporary Authorization permits upink transmissions to OSCAR 10 from 1269.05 to 1269.85 MHz ; an editorial error in the initial FCC release limited the STA to Extras only, but that was later corrected to include Technicians and above.

Youmay not beable tosolve the wortds problems. But at least youcan listen.

The Panasonic Command Series:" With double superheterodyne tuning, you'll hear the world loud and clear.

Now it's easy to listen in on the world's hot spots. With the Panasonic RF-B600 Command Series FM/LW/MW/SW receiver.

Its advanced microcomputer-controlled tuner lets you preset up to nine different frequencies. And reach them at the touch of a button. Or, press the appropriate buttons and tune in any desired frequency with directaccess digital tuning. It'Il lock right in to every signal with a PLL quartz-synthesized tuner. Once tuned in, the Panasonic double superheterodyne system helps deliver a clean, consistent signal.

There's even built-in auto-tuning to let you scan the shortwave band automatically, as well as manually. All this means you can tune in Berlin, pick up Paris, or locate London in an instant. Without dialing all over the band.

Both the RF-B600 and the RF-B300 are packed with features and built to go anywhere.

The Panasonic Command Series offers something for everyone. With equipment sophisticated enough to impress the most avid enthusiast, and automatic features that get you where you want to be. Fast.

There's a whole world out there that's waiting to be heard. Tune in to it with the Panasonic Command Series.

comments

can we talk?

Dear HR:

In the May, 1985, editorial it was noted that we Amateurs can't really communicate. I find this statement to be offensive, but in many respects accurate....

I find it offensive because I think it comes from a narrow perspective. It seems the persons making such statements see only one aspect of our hobby. I would agree that at times we really don't communicate much of anything interesting or important. The hard work and learning that made such contacts possible can't be judged on this evidence alone.

The major reason for this lack of ability to communicate clearly and effectively is a failure of our society and its education system, not the fault of Amateur Radio. We in Amateur Radio are only a reflection of the society which makes our hobby possible. Everywhere one looks these days, one can find someone writing about the deplorable state of our schools. We have students who can't read or write properly receiving diplomas and college degrees. To correct this sad state of affairs, we as a society will have to change our approach to education and discipline....

One last issue before I close. I don't think that many people, when they judge our ability to communicate, listen to 2 meters FM. This activity is one really bright spot in Amateur Radio when it comes to communication. Here you find truly local activity being
carried out. In the case of my area, Southern New England, we have many fine activities taking place on repeaters and on simplex. We have a computer net on the W 1 XJ repeater that meets on Mondays at 8:30 PM, local time, where hams communicate ideas and educational information concerning this aspect of our hobby. We have several MSO-type RTTY bulletin board systems up and running, distributing Amateur information of all kinds. We now have active packet radio systems in operation with all sorts of bulletin boards, message systems, and other features that promote real communication.
Kenneth E. Stringham, Jr., AE1X Attleboro, Massachusetts

service - not hobby

Dear HR:

Congratulations on an outstanding May issue!

It was especially interesting to read the editorial, "The Readers Speak," (page 4) regarding the problems and solutions before us. Let me call to your attention one of the problems that seems to have escaped your attention. It is one of perception, and it is reflected by you in your editorial by the use of the word "hobby" no fewer than five times. Of course, you are referring to the Amateur Radio "Service." It is, you know, a federally regulated "service" and not a "hobby."

Stamp collecting is a hobby. Model building is a hobby. Woodcraft is a hobby. Amateur Radio is a federally regulated service - even though it is perceived as a hobby by all too many hams and would-be hams.

Typically, hobbies don't require formal exams and licenses and involvement with federal regualtions. One has only to read Part 97 to see that the purpose and intent of Amateur Radio was not to establish a hobby, but rather a federally regulated communications service for the public interest, convenience, and necessity. Indeed, too many of us are overly involved in contesting and card-collecting - the hobby aspects of ham radio. But if it's presented to us as a hobby, why not?

Our organization, the Wireless Institute of New Orleans, was established by a group of dedicated hams to preserve the original principles of Amateur Radio and to promote the state of communications art. We continue to observe the degradation of ham radio into what appears to be an expanded version of the Citizen's Band. But what the hell? It's just another hobby, isn't it?
A.J. ("Buddy") Massa, W5VSR
New Orleans, Louisiana

matching dipoles

Dear HR:

Even though George A. Wilson, Jr., W1OLP, in "Matching Dipole Antennas," (May, 1984, page 129) made at least 24 separate references to GDO (Grid Dip Oscillators) and Grid Dipping, someone is certain to try substituting a solid-state dipper, (such as the Heathkit HD-1250 or one of several factory assembled versions) when exciting the RF Bridge discussed in the article. In fact, with the solid-state dipper far more prevalent today than the old vacuum tube grid dip oscillator (and interchangeable in most applications), no doubt a large number of hams who build the RF bridge will end up frustrated and with no discernible "dip."

While the solid-state dippers can be used to determine resonance, per the first part of George's article, it is not likely to provide enough excitation to obtain a reading with the RF bridge unless overcoupled, with sensitivity set at maximum, and with an extremely sensitive $\mu \mathrm{A}$ meter used as the detector. Even a $50 \mu \mathrm{~A}$ meter will probably not allow a discernible "dip" to be obtained!

A rough idea of a dipper's suitability can be obtained by connecting a germanium diode and a small 2 to 3-turn link in series across the $\mu \mathrm{A}$ meter's terminals. Coupling the link to the dipper's coil should easily produce a full-scale reading. If it does not, the dipper cannot be used to excite the RF bridge.

Robert G. Wheaton, W5XW
San Antonio, Texas

MFJ'S MOST ADVANCED RTTY/ASCII/AMTOR/CW COMPUTER INTERFACE HAS FM, AM MODES, LED TUNING ARRAY, RS-232 INTERFACE, VARIABLE SHIFT TUNING, $170 / 850 \mathrm{~Hz}$

TRANSMIT, MARK-SPACE DETECTION.

MFJ RTTY/ASCII/CW software on tape, cables for C-64/VIC-20.

179Engineering, performance, value and features sets MFJ's most advanced RTTY/ASCII/ AMTŐR/CW computer interface apart from others. FM (limiting) mode gives easy trouble-free operation. Best for general use, off-shift copy, drifting signals, and moderate signal and QRM levels. AM (non-limiting) mode gives superior performance under weak signal conditions or when there are strong nearby stations.
Crosshair mark-space LED tuning array simulates scope ellipse for easy, accurate tuning even under poor signal-to-noise conditions. Mark and space outputs for true scope tuning.
$\begin{array}{ll}\text { MFJ MULTI-FUNCTION } & \begin{array}{l}\text { MFJ-1221 } \\ \text { TUNING INDICATOR }\end{array} \$ 79.95\end{array}$

Greatly improve your RTTY copying capabilities. Add a crosshair LED Tuning Indicator that makes tuning quick, easy with pin-point accuracy. Add mark and space outputs for scope tuning. Add LEDs that indicate $170,425,850 \mathrm{~Hz}$ shifts. Great for copying RTTY outside ham bands. Add sharp mark and space filters to improve copy under crowded/weak conditions. $170,425,850 \mathrm{~Hz}$ shifts. Add Normal/Reverse switch to check for inverted RTTY without retuning. Add output level controi to adjust signal into your terminal unit. Add a limiter to even out signal variation for smoother copy.
Unit plugs between your tuner and receiver. Mark is 2125 Hz , space is 2295,2550 or 2975 Hz . Measures $10 \times 2 \times 6 \mathrm{in}$. and uses floating 18 VDC or 110 VAC with AC adapter, MFJ-1312, $\$ 9.95$.

24/12 HOUR CLOCK/ID TIMER

Switch to 24 hour UTC
or 12 hour format! Battery backup. ID timer a-

MFJ-106 lerts every 9 minutes after reset. Red .6 in . LEDs. Synchronizable to WWV. Alarm, Snooze function. PM, alarm on indicators. Gray/Black cabinet. $110 \mathrm{VAC}, 60 \mathrm{~Hz}$.

Transmits on both 170 Hz and 850 Hz shift. Built-in RS-232 interface, no extra cost.
Variable shift tuning lets you copy any shift between 100 and 1000 Hz and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII) Push button for 170 Hz shift.
Sharp multi-pole mark and space filters give true mark-space detection. Ganged pots give space passband tuning with constant bandwidth. Factory adjusted trim pots for optimum filter performance. Multi-pole active filters are used for prelimiter, mark, space and post detection filtering. Has automatic threshold correction. This advanced design gives good copy under QRM. weak signals and selective fading.

MFJ ELECTRONIC KEYER

MFJ-407 $\$ 69.95$

MFJ-407 Deluxe Electronic Keyer sends iambic, automatic, semi-auto or manual. Use squeeze, single lever or straight key. Plus/minus keying. 8 to 50 WPM. Speed, weight, tone, volume controls. On/ Off, Tune, Semi-auto switches. Speaker. RF proof. $7 \times 2 \times 6$ inches. Uses 9 V battery, 6-9 VDC or 110 VAC with AC adapter, MFJ-1305, $\$ 9.95$.

MICROPHONE EQUALIZER

MFJ-550
$\$ 49.95$

Greatly improves transmitted SSB speech for maxmum talk power. Evens out speech peaks and valleys due to voice, microphone and room characteristics that make speech hard to understand. Produces cleaner, more intelligible speech on receiving end. Improves mobile operation by reducing bassy peaks due to acoustic resonances. Plugs between mic and rig. 4 pin mic jack, shielded output cable. High, mid, low controls provide $\pm 12 \mathrm{db}$ boost or cut at $490,1170,2800 \mathrm{~Hz}$. Mic gain, on/off/bypass switch. "On" LED. $7 \times 2 \times 6$ inches. 9 V battery, 12 VDC or 110 VAC with adapter, MFJ-1312, \$9.95.

Has front panel sensitivity control.
Normal/Reverse switch eliminates retuning while checking for inverted RTTY Speaker jack. +250 VDC Ioop output
Exar 2206 sine wave generator gives phase continuous AFSK tones. Standard 2125 Hz mark and $2295 / 2975 \mathrm{~Hz}$ space. Microphone lines: AFSK out, AFSK ground, PTT out and PTT ground.
FSK keying for transceivars with FSK input Has sharp 800 Hz CW filter, plus and minus CW keying and external CW key jack.
Kantronics software compatible socket.
Exclusive TTL/RS-232 general purpose socket allows interfacing to nearly any personal computer with most appropriate software. Available TTL/RS-232 lines: RTTY demod out. CW demod out (TTL only). CW-ID in, RTTY in, PTT in, key in All signal lines are buffered and can be inverted using an internal DIP switch.
Metal cabinet. Brushed aluminum front. 121/2x $21 / 2 \times 6$ inches. 18 VDC or 110 VAC with optional AC adapter, MFJ-1312, \$9 95.
Plugs between rig and C-64, VIC-20, Apple, TRS80C. Atari, TI-99 and other personal computers Use MFJ, Kantronics, AEA and other RTTY/ ASCII/AMTOR/CW software.

MFJ ANTENNA BRIDGE MFJ-204
 $\$ 79.95$

Trim your antenna for optimum perand antenna resistance up to 500 ohms. Covers all ham bands below 30 MHz . Measure resonant frequency of antenna. Easy to use, connect antenna, set frequency, adjust bridge for meter null and read antenna resistance. Has frequency counter jack. Use as signal generator. Portable, self-contained. $4 \times 2 \times 2 \mathrm{in} .9 \mathrm{~V}$ battery or 110 VAC with adapter, MFJ-1312, \$9.95.

MFJ PORTABLE ANTENNA

MFJ's Portable Antenna lets you operate 40. 30 , 20. 15. 10 meters from apartments, motels, camp sites, vacation spots, nearly any electrically clear location where space for a full size antenna is a problem.
A telescoping whip (extends to 54 in.) is mounted on self-standing $51 / 2 \times 6 \geqslant 14 \times 21 / 4$ inch Phenolic case. Built-in antenna tuner, feld strenght meter, 50 feet RG-58 coax Complete multi-band portable antenna system that you can use nearly anywhere Up to 300 watts PEP

MFJ-1621
$\$ 79.95$

MFJ 24 HOUR LCD CLOCKS \$19.95
 $\$ 9.95$
 [B:OU FODC MF-108
 MFJ-107

Huge $5 / 8$ inch boid black LCD numerals make these two 24 Hour clocks a must for your shack. Choose from a dual clock that features seperate UTC and local time display or a single clock that displays 24 Hour time. Mounted in a brushed aluminum frame, these clocks feature huge $5 / 8$ inch LCD numerals and a sloped face for across the room viewing. Easy set month, day, hour, minute and second function. Clocks can be operated in an alternating time-date display mode. MFJ-108, $41 / 2 \times 1 \times 2$ inches; MFJ-107, $21 / 4 \times 1 \times 2$ inches. Battery included.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING)

- One year unconditional guarantee - Made in USA - Add $\$ 4.00$ each shipping/handling - Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC. Box 494, Mississippi State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE
800-647-1800. Call 601-323-5869
in Miss and outside continental uSA Telex 53-4590 MFJ STKV

HAM RADIO OUTLET 6 STORE BUYING POWER!

- TOLL-FREE PHONE: 800-854-6046

INCLUDING AL ASKA AND HAWAII ICOM

SIMPLEX-REPEATER-SATELLITE

IC-271H
2 METERS • 100 WATTS - ALL-MODE

IC-471H
$430-450 \mathrm{MHz} \bullet 75$ WATTS

- ALL-MODE

CALL FOR YOUR SPECIAL PRICE

FT-757GX
FT-2700H
NEW! 2M/70CM TRANSCEIVER

FREE SHIPMENT
MOST ITEMS. U.P.S. SURFACE

ㅌ

 TTMNERER Forméry tustaino Tower co

MA-40 40' tubular Regular $\$ 745$ SALE! \$549 MA-550 55' tubular Will handle 10 sq. ft. antennas at 50 MPH winds. Regular \$1245
SALE! \$899 IN STOCK FOR IMMEDIATE DELIVERY CALL FOR INFORMATION ON ALL OTHER MODELS

SUPER-COMPACT 2 METER MOBILE
also *IC-27H HIGH POWER VERSION AND IC-37A, 220MHz IC- 47A, 70CM

SAVE!

Biñ

MODEL 43

THE LONG TIME STANDARD FOR ACCURACY

SLUGS
MOST ITEMS IN STOCK

NEW! KENWOOD TS-940S
TOP-OF-THE-LINE HF TRANSCEIVER

NEW!
CALL FOR PRICE - Plus, plus, plus. AND INFORMATION

HAM RADIO OUTLET 6 STORE BUYING POWER!

■ TOLL-FREE PHONE: 800-854-6046
INGLUDING ALASKA AND HAWAII

> 220 MHz 's BEST BUY!
> REGULAR $\$ 449$
> $S A L E!\$ 299.95$

CALL FOR PRICE AND INFORMATION

Regular $\$ 799$
SALE! \$629.95

R-71 A
 SUPERIOR GRADE GENERAL COVERAGE RECEIVER

ANAHEIM, CA 92801 2620 W. La Palma, (714) 761-3033, (213) 860-2040, Between Disneyland \& Knotts Berry Farm. BURLINGAME, CA 94010 990 Howard Ave. (415) 342-5757,

5 miles south on 101 from San Fran. Airport.

800-854-6046
CALIF, AND ARIZONA CUSTOMERS CALL OR VISIT NEAREST STORE PHONE HOURS: 9:30 AM to 5:30 PM PACIFIC TIME. STORE HOURS: 10 AM to 5:30 PM Mon. through Sat.

SAN DIEGO, CA 92123
5375 Kearny Villa Road, (619) 560-4900

Highway 163 and Clairemont Mesa Blvd.
VAN NUYS, CA 91401 6265 Sepulveda Blvd.
(818) 988-2212

San Diego Freeway at Victory Boulevard

FM repeater separation 20 kHz Yes, 15 kHz No

Proving the point

 through VHF FM receiver selectivity measurementsAmateur use of the 2-meter ($144-148 \mathrm{MHz}$) band is now under nationwide scrutiny in an effort to determine whether the channel spacing for FM sections of the band should be set at 15 kHz or 20 kHz . The original 30 kHz spacing was divided, as band use increased, into 15 kHz channels to allow more channels; this division led to increased adjacent channel interference in many areas, which in turn resulted in the current proposal to increase the channel spacing to 20 kHz .
Changing to the 20 kHz spacing will, of course, change the frequencies of some of the channels and change the overall number of repeater "pairs" in the band. Only the technical - not the political or emotional issues implicit in these changes - will be addressed in this article.
In trying to become better informed on the issue and thus establish a more substantial foundation for our decision in northern Colorado, we examined the nature of frequency modulation and its transmission and reception, and then made some measurements on several popular transceivers. We hope this information will be useful to other repeater groups and coordinators as they weigh this issue for themselves.

Our measurements were made to establish the actual performance levels of Amateur ("consumer") and professional ("commercial") receivers, with respect to adjacent channel rejection and variation of sensitivity with transmitter deviation setting.

frequency modulation

One factor that complicates any discussion of FM
channel spacing is the varied levels of the understanding from one person to another of just how FM works. The following brief review may help to clarify the subject and shed some light on interpretation of our data.

In FM operation, the radio frequency output spectrum components vary as a function of the modulating (voice) signal amplitude. The resulting signal consists of a varying amplitude carrier and sideband pairs. (In narrow-band FM-only, the first sideband pair and carrier are significant in amplitude.) The amplitude of the carrier and sidebands is described by a mathematical term called a Bessel function of the first kind. The only thing we need to understand here is how much power is spread over how much spectrum, and what determines the signal (spectrum) width. Note that regardless of individual sideband or carrier amplitude, the total power of the FM signal is constant.

A simplified FM signal spectrum is illustrated in fig. 1. With no modulation applied, a single carrier term at a frequency f_{c} is visible. As the amplitude of the modulating signal is increased (from zero), a sideband pair displaced $\pm f_{m}$ from the carrier frequency appears. In this simplified version, we have assumed that a single-tone modulating signal (at frequency f_{m}) is used. Further increases in modulating signal amplitude cause additional sideband terms (pairs) to appear. At the same time, the amplitude of the carrier decreases. It is worthwhile reiterating that the total power of the FM signal is constant. This power distribution is a function of the modulation index β, which is defined as the ratio of frequency deviation (swing from carrier frequency) to modulating frequency $\left(f_{m}\right)$. For small values of β, the bandwidth occupied by an FM signal is simply $2 \times \mathrm{f}_{\mathrm{m}}$. As β increases, more sidebands appear (separated f_{m} in frequency from each other). A natural further complication is that voice modulation can be considered to consist of many tones of varying

By Chris Kelly, WD5IBS, 1220 East Stuart \#14, Fort Collins, Colorado 80525, and Virgil Leenerts, WDINK, 1007 W. 30th, Loveland, Colorado 80537

fig. 1. The spectrum distribution of an FM signal is a function of the modulation index β which in turn depends on the amplitude of the modulating (voice) signal. (A) the unmodulated carrier, (B) at a β of 0.4 a single sideband pair is evident with approximately $1 / 4$ of the amplitude of the unmodulated carrier, and (C) by increasing β to 0.9 a second sideband pair is also apparent. Notice that in both (B) and (C) the carrier power is reduced from its unmodulated value.
amplitudes. Consequently the total FM signal spectrum is quite complex.

For most VHF FM communications transceivers, this is 5 kHz deviation over 3 kHz maximum voice (modulation) frequency, or a β of 1.7 for high-pitched tones. Notice that lower deviation causes a lower modulation index. Using these figures, we find that 99.99 percent of the power in an FM signal will be contained in about 22 kHz of spectrum. ${ }^{2}$ Depending on the assumed voice characteristics, this figure will change, and the older EIA specifications say that 99.99 percent of the power will occupy 19 kHz of spectrum. ${ }^{3}$

In the case of several FM signals, we do not have just narrow carriers that must be separated - we have finite bandwidth modulated signals occupying some spectrum.

For any given modulation frequency, we can decrease the modulation index, and thereby decrease the spectrum occupied, but not always in an exactly linear way. By increasing or decreasing the transmitter deviation control, the power ratios in the various sidebands will change, causing various effects on the radio channel and on the receiver.

fig. 2. Bandwidth (normalized) versus modulation index β. (Adapted from C.E. Tibbs and G.G. Johnstone, Frequency Modulation Engineering, John Wiley \& Sons, Inc., New York, as reproduced in Reference Data for Radio Engineers, Sixth Edition, Howard W. Sams, Inc., publisher.)

effect of transmitter deviation on system performance

The Amateur 2-meter FM system is based on the commercial 5 kHz deviation FM system. System performance depends on the design and adjustment of the transmitters and the receivers used. However, design tradeoffs do exist.

Amateurs often discuss the effect of changing the deviation setting of ham transmitters, both in bandwidth and in effects on the receiver. We examined these two issues and made measurements of consumer gear and test equipment.

Figure 2 shows a curve of normalized significant bandwidth versus modulation index. Most Amateur transmitters adjusted for 5 kHz deviation will operate at a modulation index ranging between 3 and 6 , depending on the operator's individual voice characteristics. The curve shows that in this range the curve begins to flatten, and that increasing deviation has less effect on bandwidth than at lower modulation indices. The "rules of thumb" used to roughly describe the bandwidth of FM signals involve a limited range where the slope of this curve can be considered constant. This is because as you decrease transmitter deviation, the modulation index for a given tone rises, changing the relative energy in each sideband.

Figure 3 illustrates the effect of the modulation index on the relative amplitude of FM sideband pairs. Consider the case of a 1 kHz tone, with the operator varying the deviation control on the transmitter. When the deviation control is at zero, all the RF power is contained in the unmodulated carrier. When the deviation rises to 1 kHz , the modulation index equals 1 , and we

fig. 3. Plot of Bessel function of first kind as a function or argument β. (From P.F. Panter's Modulation, Noise, and Spectral Analysis, as reproduced in Reference Data for Radio Engineers, Sixth Edition, Howard W. Sams, Inc., publisher.)

fig. 4. Effect of deviation on sensitivity for a popular Amateur 2-meter transceiver.
see a decrease in carrier power and increases in the first and second sidebands. In fact, there are increases in every sideband, but they are too small to show on this chart. At 1 kHz deviation, we see that the amplitude of the first sidebands has risen to about 0.44 times the original carrier level, and each sideband contains about 19 percent (0.44 squared) of the RF power. Now each of the second sidebands has about 1 percent (0.11 squared) of the RF power, and the carrier has only about 60 percent of the power.

As we raise the deviation to 5 kHz , the modulation index rises to $5(5 \mathrm{kHz}$ deviation/ 1 kHz modulation) and we can see that significant energy is now found
in almost all sidebands up to the eighth. (Actually, there is energy present in other sidebands, but this chart cannot illustrate that.) The sidebands are spaced at intervals corresponding to the frequency of the modulating tone (1 kHz).
Note also how the modulation index varies with the modulating tone. Consider what would happen if we left the transmitter at 5 kHz deviation, but raised the modulating tone to 2000 Hz . The modulation index would drop to 2.5 , and we would have to examine fig. 3 at this new point to determine the relative amplitude of sidebands at the new index. Here, only the first five sidebands are noticeable - but remember, these sidebands are now 2 kHz apart. The bandwidth of the signal has increased, but it has not doubled.

It should be noted that this discussion of single-tone modulation is a very simplified version of what happens when voice is used to modulate the carrier. The voice is composed of many frequencies, and the composition changes with time. The components of the FM signal are many, and not just the sum of the voice frequencies. Consider a case of just two tones modulating the carrier. There will be carriers with amplitude of the Bessel function $\left(J_{0}\right)$ at the deviation ratio of the first tone, the Bessel function (J_{0}) of the second tone, and sidebands having lines of all Bessel functions of $f_{1}, f_{2}, f_{1}+f_{2}, f_{1}-f_{2}, f_{1}+3 f_{2}, 3 f_{1}+f_{2}$, and so on.

If you now consider the complexity of the human voice, the problem of mathematically describing the bandwidth becomes unmanageable, at least for this author. For this reason the discussions here are limited to single-tone modulation.

The second aspect of performance affected by the deviation adjustment of the transmitter is how well the receiver is able to demodulate these signals. This is a very easily measured parameter. We checked the perormance of an Amateur receiver when receiving signals at different deviation values. In this test, we used a Hewlett-Packard 8640B signal generator and a SINADder. We measured the sensitivity of the receiver at the 12 dB SINAD point at deviations of 500 Hz , and 1 kHz through 10 kHz deviation in steps of 1 kHz . The results of the test are shown in fig. 4.

Notice that maximum sensitivity (-122 dBm at 12 dB SINAD) occurs at 3,4 , and 5 kHz deviation. The sensitivity is not affected by changes in deviation within this range. But above 5 kHz and below 3 kHz deviation, the sensitivity actually decreases. This result contradicts the popular notion that increasing the deviation of a transmitter increases range, and further indicates that reduction of transmitter deviation below 5 kHz does not reduce range (down to no less than 3 kHz , that is).

receiver selectivity

Although the performance of a receiver in rejecting
table 1. Level of isolation from interference experienced on channels separated from 10 to 30 kHz from an adjacent FM source.

Kenwood TW-4000A. On channel signal: $-115 \mathrm{dBm}, \pm 3 \mathrm{kHz}$ deviation, 1000 Hz modulation.

interference modulation	$\mathbf{3 0 ~ k H z}$ (dB)	$\mathbf{2 0 ~ k H z}$ (dB)	$15 \mathbf{k H z}$ (dB)	$\mathbf{1 0 ~ k H z}$ (dB)
400 Hz (EIA)	86	80	45	0
800 Hz	86	80	40	0
1200 Hz	86	80	33	0
2000 Hz	86	68	25	0

Kenwood TR-7800. On channel signal: $-114 \mathrm{dBm}, \pm 3 \mathrm{kHz}$ deviation, 1000 Hz modulation

$400 \mathrm{~Hz}($ EIA $)$	87	82	65	2
800 Hz	87	83	57	0
1200 Hz	87	83	48	0
2000 Hz	87	79	37	0

Handheld 1. On channel signal: $-115 \mathrm{dBm}, \pm 3 \mathrm{kHz}$ deviation, 1000 Hz modulation

400 Hz (EIA)	69	52	35	0
800 Hz	69	52	34	0
1200 Hz	69	52	30	0
2000 Hz	69	52	25	0

Motorola Syntor-X, $\mathbf{4 6 0 . 4 2 5 ~ M H z}$. On channel signal: - 107 dBm , $\pm 3 \mathrm{kHz}$ deviation, 1000 Hz modulation.

400 Hz (EIA)	93	85	53	13
800 Hz	93	85	53	13
1200 Hz	93	85	50	20
2000 Hz	93	84	43	8

off-channel signals is something that cannot be adjusted easily, it is a major element of any radio communications system. A receiver consists of RF, IF, discriminator, and audio sections with most of the selectivity provided by the IF filter section. Intermodulation products and images can be generated in the RF and mixer stages. However, these are not directly related to the problem of adjacent channel interference - the IF filter and discriminator are.

Most FM receivers use crystal or ceramic filters to narrow the IF bandwidth before the signals reach the discriminator, where they are demodulated (back) to audio frequencies. While it would be nice if we could build ideal filters that would pass all signals in the desired passband and completely stop all off-channel signals, this isn't possible. Filters actually have finite passbands with "skirts" that roll off signals more the further away from the channel center frequency they are. The filters are usually specified by their bandwidth at the -6 dB and the -60 dB points; this is also how most ham transceivers are specified for selectivity.

Because the actual performance of the radio depends on this and other, less easily described factors - including discriminator performance - commercial manufacturers have therefore elected to specify their receiver selectivity with a functional test that actually challenges the receiver with a signal in the ad-

fig. 5. Setup is used to perform the adjacent channel selectivity tests. (From Standard Radio Communications Manual by Harold Kinley, (c) 1985. Prentice- Hall, Englewood Cliffs, N.J. 07632 . Reprinted by permission of the publisher.)
jacent channel and measures the result. This is the test we selected and performed to determine selectivity.
The Electronic Industries Association (EIA) has established an adjacent channel rejection test based on the ratio between the on-channel to off-channel signal strengths when the received signal-to-noise and distortion (SINAD) ratio becomes degraded by 3 dB by the adjacent channel signal. This test, part of the RS 204-C test, is performed by mixing the signals from two signal generators and measuring the SINAD of a 1000 Hz tone modulating the on-channel signal at 3 kHz deviation. ${ }^{4}$
The test setup used to perform the selectivity test is shown in fig. 5. The on-channel signal level is raised to obtain a 12 dB SINAD, then raised an additional 3 dB . The off-channel signal is modulated at 3 kHz deviation by a 400 Hz tone, and its signal level is raised until the SINAD is degraded back down to 12 dB . Then the ratio of the two signals' strength is calculated in dB . When this measurement is made for both the next higher and the next lower adjacent channels, the lower of the two figures is used.

When the EIA established these tests for selectivity, they also established standards they consider "mini-

the action is at the IF - not the RF - stages

When the problem of adjacent channel interference is examined, attention is focused on the filtering that takes place at the intermediate frequency (IF) stages of the receiver, not at the radio frequency (RF) stages. The reason the IF gets the attention is the very narrow bandwidth required to allow separation of channels within the receiver's radio frequency input bandwidth.

At the RF frequencies, cavity resonators are usually used by repeaters and helical resonators are found in commercial and some consumer receivers. These filters are used to control the receiver's RF bandwidth to improve performance in terms of sensitivity and reduction of out-ofband signal strength. By this filtering, desensitization ("desense") and intermodulation distortion ("intermod") are reduced. However, these filters are typically 50 kHz to several Megahertz wide, and match the input RF stages to the intended operating range of the receiver. These filters are therefore very wide compared to the spacing of the channels (15 or 20 kHz), and will not have any significant filtering effect on those adjacent channels signals.
In the IF amplifier chain, however, the very narrow filters required become practical, due to both the lower frequency used in the IF (typically from 0.455 to 10.7 Megahertz) and the fact that the intermediate frequency does not have to be varied as the radio changes operating frequencies. In the IF stages, crystal filters are most commonly used to obtain very high " Q " (resonant frequency divided by bandwidth), frequency stability and shape factor (bandwidth at -60 dB divided by -6 dB bandwidth). These filters are commonly built with very narrow passbands (12 to 20 kHz wide for FM , and as little as 250 Hertz wide for CW applications). Even these filters do not act as "brick-walls," passing all signals in the passband and completely stopping all signals outside of the passband; since their out-of-band attenuation increases as the off-channel signal moves farther away from the passband. The slope of this attenuation is another factor in the response of a receiver to the adjacent channel rejection test, and together with the filter bandwidth (3 dB bandwidth) is a major factor in determining receiver performance in the test.
The IF filter, then, plays a key part in determining the receiver's response to adjacent channel interference, while the filtering at the RF stages of the receiver has little or no effect on this problem.
mum acceptable" performance. For this test, performed on the adjacent channels, the minimum acceptable standard is 70 dB isolation from the adjacent channel.

In these tests, we used a pair of HP 8640 B VHF generators, chosen for their spectrally pure output signals (SSB phase noise below -130 dBc), as the signal sources. The SINAD was measured using a Helper Instruments "SINADder 5."

After the normal RS-204-C tests, we also measured selectivity with different frequencies of modulating tone on the adjacent channel signal. We did this because we believed that the choice of a 3 kHz deviation and a 400 Hz modulation tone may not be realistic for direct comparison with the ham environment, since our DTMF tones and voices contain higher frequency components than 400 Hz , and our transmitters may be adjusted for greater deviation. While we did not change the deviation setting, we made additional measurements with tones of 800,1200 , and 2000 Hz at $3-\mathrm{kHz}$ deviation.

We measured receiver performance in this way, at channel spacings of $10 \mathrm{kHz}, 15 \mathrm{kHz}, 20 \mathrm{kHz}$, and 30 kHz . The seven units we tested included one commercial and three consumer mobile transceivers as well as three handhelds.

results with consumer gear

The results with consumer equipment are shown in figs. 6A, B, and C. Note that at 10 kHz spacing, little or no adjacent channel rejection is evident, and signals within 10 kHz of the channel center frequency are treated as "on-channel" by the receivers. This gives some idea of the bandwidth of each receiver's IF filter.

At 15 kHz separation, the adjacent channel isolation (of an unmodulated carrier) is about 45 to 70 dB . With the introduction of modulation, the interfering signal component is up by as much as 30 dB from ideal.

At 20 kHz , the adjacent channel isolation is about 80 dB , and some adjacent channel modulation is still detected. In most cases, the 20 kHz measurement was within a few dB of the receiver's ultimate rejection (as measured at 30 kHz separation).

At 30 kHz , the adjacent channel isolation is about 85 dB , and there is no change in this figure because of modulation frequency change. This figure shows little variation among the mobile rigs, but the handheld unit shows slightly lower performance (70 dB). (See appendix for further details.)

results with commercial gear

Motorola loaned us a commercial UHF "SYNTOR$\mathrm{X}^{\prime \prime}$ which tuned to 460 MHz . (A VHF unit was not available.) At UHF, commercial manufacturers and Amateurs use $25-\mathrm{kHz}$ channel spacing, but shop personnel believe that both VHF and UHF radios have similar specs and IF designs. We believe this test is

COM 144, 220 and $440 \mathrm{MH}^{2}$

The World's Most Compact Mobiles

ICOM's three ultra comact mobiles...the IC-27A -meter, the IC-37A 220 MHz ind the IC-47A $440 \mathrm{MHz} .$. re the smallest mobiles vailable.
Even in such a small packige the 25 watt mobiles ontain an internal speaker vhich makes them fully selfontained and easy to nount.
size. The ICOM compacts neasure only $51 / 2^{\prime \prime} \mathrm{W} \times 1 / 12^{\prime \prime} \mathrm{H} \times$ "D (IC-47A is 9" deep). which allows them to be nounted in various "compact' ocations. Yet the compacts lave large operating knobs which are easy to use in the nobile environment.

More Features. Other IC-27A/37A/47A standard features include a mobile mount, IC-HM23 DTMF mic with up/down scan and memory scan, and internally adjustable transmit power. An optional IC-PS45 slim-line external power supply and IC-SP10 external speaker are also available.

32 PL Frequencies. The IC-27A/37A/47A come complete with 32 PL frequencies.

9 Memories. The compact mobiles have 9 memories which will store the receive frequency, transmit offset, offset direction and PL tone. All memories are backed up with a lithium battery.
Speech-Synthesizer. To verbally announce the receive frequency, an optional UT-16 voice synthesizer is available.

Scanning. The ICOM

compacts have four scanning systems...memory scan, band scan, program scan and priority scan. Priority may be a memory or a VFO channel.... and the scanning speed is adjustable.

Stacking Mobile Mounts. The $16-27 A / 37 A / 47 A$ can be stacked to provide a three band mobile station. Each band is full featured and will operate even when another band is in use.

The IC-27A/37A/47A provide superb performance in the mobile radio environment. See them at your local ICOM dealer.

First in Communications

therefore representative of commercial receiver performance at VHF.

At 10 kHz , the SYNTOR showed slight rejection (see fig. 7), about 10 dB , of the interfering signal, indicating a slightly narrower IF filter than found in the consumer gear. Still, the low value means that receiver bandwidth is approximately $15-20 \mathrm{kHz}$ total.

At 15 kHz , the SYNTOR showed 53 dB isolation, which was degraded by 10 dB when the modulating tone was increased to 2000 Hz . This again indicates, as in the case of the consumer gear, that we are on the skirts of the IF filter.

At 20 kHz , the isolation increased to 85 dB and was degraded only 1 dB by increasing the modulating tone to 2000 Hz .

At 30 kHz the SYNTOR showed 93 dB isolation, actually better than its specifications by several dB . Varying the modulating tone made no difference during the measurements.

discussion

Two major results are evident in this data. First, while commercial radio gear offers higher performance

fig. 6. Effect of modulating frequency on selectivity test. Performed on three consumer (Amateur band) transceivers using 3 kHz deviation and 400 Hz (RS-204-C test), $800 \mathrm{~Hz}, 1200$, and 2000 Hz modulation tones. (A) Kenwood TW-4000A, (B) Kenwood TR-7800, and (C) Handheld, HT1.

John J. Meshna Jr., Inc.

P. O. Box 6219 Allerton St. E. Lynn, Ma. 01904 Tel: (617) 595-2275

Dual $8^{\prime \prime}$ F. D. D. Case by SMS w/ POWER ONE Power Supply \& Cooling Fans We were very fortunate to find these beautifully designed \& constructed rack mount disc drive cases in the surplus field. These cases were made for Scientific Micro Systems for their FT Series of equipment. They are manufactured from heavy guage steel w/ a cast metal designer bezel. They were designed to house $28^{\prime \prime}$ floppy or hard drives. We offer you the case with the following components \& features: hinged cover with restraining cable for simplified servicing of the interior components, 2 muffin fans for assured cool operation, studs for mounting the controller card listed below, and a heavy duty Power One power supply (their model no. CP 281A). The outputs of the power supply are as follows: $+5 \mathrm{vdc} 11 \mathrm{amps},+24 \mathrm{vdc} 3.5 \mathrm{amps},+12 \mathrm{vdc} .25 \mathrm{amps},-12$ $\mathrm{vdc} .25 \mathrm{amps}, \&-5 \mathrm{vdc} .25 \mathrm{amps}$. The input to the power supply is $115 / 230$ vac $50 / 60 \mathrm{~Hz}$. and is both filtered and fused. This assembly must have originally sold for well over $\$ 300.00$ each ! Only 25 on hand, so order early or be left out on this super bargain! Shpg. wt. 38 lb . SPL-479-35 $\$ 135.00$ each

Scientific Micro Systems IBM 3740 Compatible 8" FDD Controller Card
The SMS FD $05028^{\prime \prime}$ floppy disc drive controller is a complete preprogrammed controller for single or double density recording on either single or dual headed disc drives. It performs control functions required to transfer data between 1 to 4 drives and a host system, performs all formatting functions re quired to read and write data and utilizes both IBM single and double density standards to achieve up to 630 Kilobytes of storage per disc surface. Some features are: programmable sector size, 128, 256, 512, or 1024 bytes, jumper selectable drive type, block transfer mode, sector buffer, overlapped head seek, on board General Purpose Host Interface with asynchronous 19 TTL signal lines for eight bit host system and input of only 5 vdc 6 amps . This board provides a direct interface to the following drives: Shugart $800-2 / 850$, Pertec 511, Memorex 550/552, MFE 751B, Qume Data Trak and similiar drives. These boards were removed from the above cabinets which were in service prior to our reception of them. The manufacturers price on these IBM compatible boards is currently $\$ 900.00$ each. These boards all appear to be in excellent condition. If more information is needed, please call us. Shpg. wt. 3 lb. SPL $480 \$ 150.00$

SEAGATE TECHNOLOGY ST 506 51/4" HARD DRIVES
The Seagate Technology ST 506 hard disc drive utilizes proven Winchester technology for reliable storage of up to 5 megabytes of formatted data. Some features of this very popular drive are: 5 megabit/second data transfer rate, simple floppy like interface, high speed band actuator \& stepper head positioning, requires only $+5 \&+12$ vdc, and same physical size and mounting parameters as a mini floppy drive. This Shugart compatible drive is the same as used on many home personal computers. Each drive is checked out prior to shipment. Comes with data. Only a few on hand, so order early. Will run with OMTI con troller card listed below.
Shpg. wt. 8 lb. ST. 506 - $\$ 225.00$ \$175.00

$51 / 4^{\prime \prime}$ HARD DRIVE CONTROLLER CARD

Finally, affordable, intelligent disc drive controllers are available at low, low surplus prices. The OMTI 20 C controller boards we offer are unused, late style, surplus from a now defunct system house. OMTI is a division of Scientific Micro Systems. These boards will handle up to (2) 51/4 inch Winchester type hard drives that utilize a standard 34 pin SASI interface. Perfect for using with the above Seagate ST 506 drive, or other hard drives from 5 megabytes of storage on up. The controllers have buffered slew/seek modes, overlapped seeks, auto seek \& verify, extensive fault detection, auto head \& cylinder switching, full sector buffering, 256/512 bytes/sector, 33 or 18 sectors/track (jumper selectable), programmable disc parameters and much more. The board runs on $+5 \mathrm{vdc} \&+12$ vdc.. We supply users manual \& pinout data. Guaranteed O. K.. Shpg. wt. 3 lb . OMTI $20 \mathrm{C} \$ 150.00$ each $2 / \$ 275.00$ Qty. pricing available.

5 VDC 25 AMP SWITCHING POWER SUPPLY

We just got in a small lot of ruggedly built, lightweight (4 lb.), compact ($11^{\prime \prime} \times 5^{\prime \prime} \times 1 \frac{1 / 2 ")}{}$), fully enclosed (cover removed for pic.), regulated, switching, power supplies made by RO Industries. Input of $115 / 230 \mathrm{vac}$ is attached thru convenient, clearly marked screw terminals. The hefty 5 vdc 25 amp output is via heavy duty, brass lugs with a Red LED sta tus indicator. All appear to be unused and in excellent condition. Shpg. wt. 6 lb. PS $-8 \$ 50.00$

Free 72 page catalogue available or send $\$ 1.00$ for 1st MCne (617) 595-2275 to place your order by phone. Free 72 page catalogue available or send $\$ 1.00$ for
class service to P. O. Box 62 E. Lynn, M. 01904 .

MC, VISA or American Express charge cards accepted.

why do we use FM?

Considering the ongoing discussions of channel spacing and FM bandwidth, one might ask why hams use FM, which occupies such a large bandwidth compared with AM or single sideband (SSB). The answer lies in the improved signal-to-noise ratio (S / N) gained by the demodulator in an FM receiver. If you compare the signal-tonoise ratio of the demodulated signal with the carrier to noise ratio (C / N) of the radio wave before demodulation, you find that above a certain threshold, the demodulated signal shows a significant enhancement in S / N. The measurement of C / N must be made in a bandwidth equivalent to the IF bandwidth of the receiver, but within these constraints, we find an enhancement factor of: $\mathrm{E}=6 \beta^{2}(\beta+1)$ where β is the modulation index of the FM signal.*

To see how significant this enhancement is, consider the case of a 1000 Hz tone modulating a carrier at 4.5 kHz deviation, and a beta of 4.5 , not unusual in Amateur voice systems. In this case, the enhancement is 668 times the carrier to noise ratio, or about 28 dB .
This enhancement, seen only above a threshold C / N, is one reason $F M$ is popular for both commercial broadcasting and communications. Below this threshold, FM actually provides lower S / N than other modes, which is why weak-signal work is seldom done using FM.
*Simon Haykin, Communications Systems, John Wiley \& Sons, 1983.
than conșumer radios, the differences are not particularly large. Secondly, when operated at 15 kHz spacing, all these receivers will exhibit considerably degraded performance when compared to their use at 20 kHz .

On the first result, we wish to note that in the last several years, commercial radio suppliers have changed their radio designs from a relatively limited coverage radio to one that can cover channels separated by many Megahertz. This has been done by reducing filtering at the RF stages and enhancing the IF filters to maintain performance. While this reduction of the Q of the RF portion of the receivers does not alter the adjacent channel rejection, the enhancement of the IF stages does. The SYNTOR-X model is capable of covering the entire 450 MHz commercial band without retuning the RF stages, and represents firstclass commercial radio equipment, with a price near $\$ 2800$.

fig. 7. Selectivity test performed on a commercial UHF transceiver (Motorola "SYNTOR-X"). Both the EIA RS-204-C and 2000 Hz tones were used.

We expected, and found, excellent IF performance in the Motorola gear. The surprise was that the IF performance of the consumer gear was actually quite similar, and for most Amateurs the difference would not be significant - this was a surprise to us because we suspected that by adopting commercial standards for Amateur purposes, the interference problem could be solved. But the answer is clearly not that simple.

On the second result, we believe that when these radios are operated with 20 kHz channel spacing, they demonstrate performance which is near their ultimate design goal (as defined by their 30 kHz performance). At 15 kHz spacing, these radios all demonstrated very similar degradations in performance, and these degradations amounted to 30 to 40 dB . Furthermore, this degradation was significantly affected by the bandwidth of the interfering signal. Considering the conservative settings (3 kHz deviation, 400 Hz modulation) we believe the 15 kHz isolation numbers are generous compared to the Amateur environment, where 4.5 to 6 kHz deviation seems more common.

fig. 8. This graph clearly illustrates the need for at least 20 kHz separation between repeater channels.

Finally, when these results are compared with the EIA specification for minimum acceptable adjacent channel rejection, we see that all the receivers failed the test at 15 kHz spacing, and all but the handheld unit passed the test at 20 kHz spacing (see appendix).
The mechanism for this adjacent channel interference depends on both the nature of FM itself and the design of the receiver IF filters. What we believe is happening is shown in fig. 8. In this diagram, we have illustrated the shape of the FM signal resulting from a 1 kHz tone modulating a transmitter at 3 kHz deviation. First note the zone called "required bandwidth," which is the legendary 13 kHz wide. This zone shows the sidebands down to -40 dB from the carrier's unmodulated level. It is evident that some remaining sidebands are present, down to the -80 dB level, with the noise floor of the test instrument, an HP8568B spectrum analyzer.

On the left of the diagram, we have illustrated the filter shapes of typical consumer receivers spaced 30 , 20 , and 15 kHz away from the carrier frequency of the signal. Notice that at 30 kHz spacing, no power from the signal is entering the receiver's passband, down
to the resolution of the instrument. At 20 kHz spacing, the edge of the receiver passband intersects a small portion of the signal, indicated by the area labeled 1 . At 15 kHz spacing, more of the signal is in the receiver passband, as noted by areas 1 and 2. While it would be difficult to quantify the difference from this diagram, our tests have shown that this difference is in the range of 30 to 45 dB . If the more liberal EIA RS-204-C test were performed, using a 400 Hz tone, the receivers would pass at 20 kHz separation and fail at 15 kHz spacing.
We hope this report is informative and will be useful as you make your decisions on coordinating repeaters, both in frequency and geographical separation.

references

1. Reference Data for Radio Engineers, Sixth Edition, ITT and Howard W. Sams, Indianapolis, Indiana 46268, 1981, pages 23-7 to 23-9.
2. Carleton Mayiott, W2YE, "Close Look at Amateur FM," ham radio, August, 1979, page 46.
3. R. Harold Kinley, Standard Radio Communications Manual, Prentice Hall, 1985.
4. EIA Standard RS-204-C, Electronic Industries Association, Washington, D.C., page 16 , paragraph 14.2

AMATEUR TELEVISION

KPA5 1 WATT 70 CM ATVTRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races \& other public service events, remote VCR, etc. Remote control of R/C airplanes or robots. Show home video tapes, computer programs, repeat SSTV to local ATVers. DX depends on antennas and terrain typ. 1 to 40 miles.
- FULL COLOR VIDEO \& SOUND on one small $3.25 \times 4^{\prime \prime}$ board
- RUNS ON EXTERNAL 13.8 VDC at 300 ma supply or battery.
- TUNED WITH ONE CRYSTAL on $426.25,434.0$, or 439.25 mHz
- 2 AUDIO INPUTS for a low Z dynamic and line level audio input found in most portable color cameras. VCRs, or home computers
- APPLICATION NOTES \& schematic supplied for typical external connections. packaging. and system operation.
- PRICE ONLY $\$ 159$ delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with a TVC-2 or TVC $-4420-450 \mathrm{mHz}$ to channel 3 downconverter, 70 cm antenna, and coax cable to receive. Package up the KPA5, add 12 to 14 vdc , antenna, and any TV camera, VCR, or computer with a composite video output. Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG \& more info on atv downconverters, antennas, cameras, etc., or who is on in your area.
TERMS: Visa, Mastercard, or cash only UPS COD by telephone or mail. Telephone orders \& postal MO usually shipped within 2 days, all other checks must clear betore shipment. Transmitting equipment sold only to licensed amateurs verified in 1984 Callbook Calif. include sales tax
(818) $447-4565 \mathrm{~m}-\mathrm{f} 8 \mathrm{am}-6 \mathrm{pm}$ pst.
P.C. ELECTRONICS

Tom W60RG Maryann WB6YSS

2522 Paxson Lane Arcadia CA 91006

appendix

Of the three handhelds tested (HT1, HT2, and HT3 - see table A1) variation existed from one unit to the other and also from the better side to the worse side of the filter. Because this test is made on the side of the filter (response) and not farther away from the passband, the results will be very sensitive to the frequency to which the receiver is tuned. Therefore, if the receiver drifts, it will change the better and worse isolation figures even more. There is also something else at work here: notice that HT3 shows considerable variation at 15 kHz from one side of the filter to the other, but its figures are more nearly equal at 20 and 30 kHz than HT1's. This is a dramatic demonstration of why a performance test like this is so much more revealing than merely quoting the nominal specification of the filter element.
table A1. RS-204-C test results for three handhelds (interfering signal, 400 Hz).

Channel Spacing:		15 kHz	20 kHz	30 kHz
dB isolation	(HT1)	$32 / 50$	$48 / 70$	$69 / 77$
	(HT2)	$58 / 69$	$76 / 80$	$83 / 83$
	(HT3)	$23 / 66$	$70 / 73$	$76 / 77$

This table is not meant to compare one brand name against the other (thus the anonymity) since none of the units are at their brand-new performance levels, but have been in use for varying lengths of time. Variation between individual units of a given model may also be considerable. To compare given models fairly, we would have to test several of each type to obtain a sample large enough to be considered representative of its series.

More important, though, is the difference in readings between the upper and lower adjacent channel tests and its effect on performance. Remember, the ElA (specification) procedure calls for using the lower of the two figures.

Finally, perhaps the EIA-70 dB specification is not meant for HTs; considering their intended use, it may be acceptable for HTs to have a lower isolation value since they are typically operated closer to the repeater and use a much lower gain and altitude antenna than found on most home or mobile installations.
ham radio

KENWOOD SPECIAL NEW

 TS-940Swith automatic tuner
\$1765.00
Plus shipping

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL

- ALPHA DELTA - ASTRON • AUSTIN ANTENNAS • AVANTI
- BELDEN • BENCHER • B \& W • DAIWA • HAM-KEY
- HUSTLER • KLM • LARSEN • MIRAGE • ROHN
- TELEX/HY-GAIN • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK
Telephone 617/486-3400, 3040 675 Great Rd., (Rite. 119) Littleton, MA 01460 1\% miles from Rte. 495 (Exit 31) toward Groton, Mass.

THE MOST AFFORDABLE REPEATER
 ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
 (AND GIVES THEM TO YOU AS STANOARD EQUIPMENT:)

FEATURES:

- SENSITIVITY SECONDTO NONE; 0.15 uV (VHF), 0.2 uV (UHF) TYP.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLEXTAL FILTER \& CERAMIC FILTERFOR $>100 \mathrm{dBAT} \pm 12 \mathrm{KHZ}$. HELICALRESON ATOR FRONT ENDS TO FIGHT DESENSE \& INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL
- CLEAN, EASYTUNETRANSMITTER;UPTO2OWATTSOUT (UPTO 50WWITH OPTIONAL PA).

HIGH QUALITY XMTR \& RCVR MODULES FOR

 REPEATERS, LINKS. TELEMETRY, ETC.
- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV

 sens.;8 pole xtal filter \& ceramic filter in i-f, helical resonator front end for exceptional selectivity, $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$, best available today. Flut-ter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only $\$ 138$.- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $\$ 138$.
- R76 FM RCVR for $10 \mathrm{M}, \mathbf{6 M}, 2 \mathrm{M}$, or 220 . As above, but w/o AFC or hel. res. Kits only $\$ 118$. Also avail w/4 pole filter, only $\$ 98 / \mathrm{klt}$.
- R110 VHF AM RECEIVER kit for VHF aircraft or ham bands or Space Shuttle. Only $\$ 98$.
- T51 VHF FM EXCITER for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, or 220 MHz . 2 Watts continuous, up to 3 W intermittent. \$68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts. Kit only $\$ 78$. Xtal oven avail.
- VHF \& UHF LINEAR AMPLIFIERS. For either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from $\$ 78$.

NOW-FCC TYPE-ACCEPTED TRANSMITTERS \& RECEIVERS AVAILABLE FOR HIGH-BAND \& UHF. CALL FOR DETAILS.

RECEIVING CONVERTERS

LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

*

No Need to Pay $\$ 80$ to $\$ 125$ for a GaAs FET Preamp.

FEATURES:

- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF - High Gain: 18 to 28 dB , Depending on Freq. - Wide Dynamic Range for Overload Resistance - Latest Dual-gate GaAs FET, Very Stable MODEL TUNES RANGE PRICE

LNG-28 $\quad 26-30 \mathrm{MHz} \quad \$ 49$
LNG-50 $\quad 46-56 \mathrm{MHz} \quad \$ 49$
LNG-144 $\quad 137-150 \mathrm{MHz} \quad \$ 49$
LNG-160 $\quad 150-172 \mathrm{MHz} \quad \$ 49$
LNG-220 $\quad 210-230 \mathrm{MHz} \quad \$ 49$
LNG-432 $\quad 400-470 \mathrm{MHz} \quad \$ 49$
LNG-800 $\quad 800-960 \mathrm{MHz} \quad \$ 49$

HELICAL RESONATOR PREAMPS

Low-noise preamps with helical resonators re-cross-band interference

Model		Tuning Range
		Price
HRA-144		$143-150 \mathrm{MHz}$
HRA-220		$\$ 49$
HRA-432	$420-233 \mathrm{MHz}$	$\$ 49$
HRA-()	$150-174 \mathrm{MHz}$	$\$ 59$
HRA-()	$450-470 \mathrm{MHz}$	$\$ 54$
		$\$ 64$

- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter. Automatically keys transmitter and provides handshakes. $1200 / 2200 \mathrm{~Hz}$ tones. Kit only $\$ 45$.
- DE-202 FSK DATA DEMODULATOR. Use with any FM receiver to detect packet radio or other digital data in " 202 " modem format. Provides audio conditioning and handshakes. Kit only $\$ 38$.
- COR-2 KIT With audio mixer, local speaker amplifier, tail \& time-out timers. Only \$38.
- COR-3 KIT as above, but with "courtesy beep". Only \$58.
- CWID KITS 158 bits, easily field programmable, clean audio. Kit only $\$ 68$.
- A16 RF TIGHT BOX Deep drawn alum case with tight cover and no seams.
$7 \times 8 \times 2$ inches. Designed especially for repeaters. $\$ 20$.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones®, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only \$90
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $\$ 90$. Requires DTMF Module.
- SIMPLEX AUTOPATCH. Use with your FM transceiver. System includes DTMF \& Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $\$ 200 / \mathrm{kit}$. Call or write for details.
duce intermod and in critical applications. 12 dB gain.

HF UHF LINEAR AMPLIFIERS. Use with above.
Power levels from 10 to 45 Watts. Several models, kits from $\$ 78$.

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

For VHF, Model XV2	Exciter Irput Range	Antenna Output
	2830	${ }^{144-146}$
	28-29	$145-146$ $50-52$
Wired \$149 (Specify band)	27-27.4	144-144.4
	28-30	220-2220
	- ${ }_{\text {50-54 }}^{144-146}$	$220-224$ $50-52$ 1
	50-54	144-148
	144-148	28-30
For UHF, Model XV4	${ }_{28-30}^{28-30}$	
	$28-30$ $50-54$	$435-437$ $432-436$
Kit \$99	$\underset{144-14 B^{6}}{61.25}$	${ }_{\text {4 }}^{4392.25}$.
Wired \$169	144-148	432-4.36

- SEND $\$ 1.00$ for 40 page CATALOG

 (Send $\$ 2.00$ or 4 IRC's for overseas mailing)- Order by phone or mail - Add $\$ 3 \mathrm{~S}$ \& H per order (Electronic answering service evenings \& weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.

calculating the input impedance of a tapered vertical

Schelkunoff procedure
 - best method to use

fig. 1. Comparison between tapered and exponential transmission line.

In the last decade there has been a tendency among Radio Amateurs to use vertical whip antennas on 80 and 160 meters. One clear advantage of using tapered whip elements, constructed of aluminum tubing, is their durability under severe weather conditions. But the fundamental question and the main obstacle to even more widespread Amateur use of the antenna is the problem of accurately determining the antenna feedpoint impedance for various tapers.

For cylindrical element length-to-diameter ratios, the feedpoint impedances are readily solvable by analytical methods such as Hallen's integral equation, ${ }^{1}$ the induced EMF method, ${ }^{2}$ and Schelkunoff's input impedance equation. ${ }^{3}$ Using a computer and the "method of moments" approach, employing matrix algebra techniques, ${ }^{4}$ will also provide answers.

which approach to use?

The basic question to be answered is what method should be employed to solve for the feedpoint impedance of a tapered vertical before its actual construction begins. Perhaps a clue is provided in the analytical method described by James Lawson, W2PV, in his well-known ham radio series on YagiUda antennas. ${ }^{5}$ Lawson stated that the inductance to capacitance (L / C) ratio of a tapered element is related to a geometrical mean diameter. Each cylindrical section has its own L / C ratio, or more specifically, its own surge impedance $Z_{0}=\sqrt{L / C}$. This formula is used to describe an exponential (Collins) transmission

By Walter J. Schulz, K30QF, 3617 Nanton Terrace, Philadelphia, Pennsylvania 19154

fig. 2. A tapered antenna element can be considered as a truncated cone.

L/A
fig. 3A. "M" factor versus normalized length for tapered antenna elements. (Adapted from Sergei A. Schelkunoff's Advanced Antenna Theory, John Wiley and Sons, New York, 1952.)
line used for matching two different impedances (see fig. 1). Notice that each section of the exponential transmission line has its own surge or characteristic impedance. An impedance transformation occurs in either direction as a result of the taper. Consequently a tapered antenna element can be considered as a tapered exponential transmission line that has an average characteristic impedance described as a geometrical mean of its diameter.

W2PV took note of this physical relationship, applied that relationship to Yagi elements, and developed a method to evaluate the taper. An even earlier method, developed by Sergi A. Schelkunoff at Bell Labs is easier to work out - with either a pencil and paper or with a handheld calculator - yet still provides accurate results.

fig. 3B. "N" factor versus normalized length for tapered antenna elements. (Adapted from Sergei A. Schelkunoff's Advanced Antenna Theory, John Wiley and Sons, New York, 1952.)

describing a tapered vertical

A tapered vertical element may be thought of as a truncated cone, as shown in fig. 2, with specific base and tip diameter and length, using cylindrical elements that telescope into one another, exhibiting impedance discontinuities at each section boundary. Consequently, eq. 1 can be used to describe a tapered vertical element shape factor. ${ }^{7}$

$$
\begin{equation*}
Z_{0}=60 \ln (2 L / b)+60 t / b-t \ln (t / b) \tag{1}
\end{equation*}
$$

where $L=$ length (inches)
$b=$ base radius (inches)
$t=$ tip radius (inches)
Not only was Schelkunoff able to determine the shape factor, but he was also successful in making the necessary engineering approximations to equate antennas to transmission line behavior. This resulted in the modification of the basic transmission line formula for the solution of feedpoint impedance values for arbitrarily shaped antennas. ${ }^{3}$

$$
\begin{equation*}
Z_{i n}=Z_{0} \frac{R_{a} \sin G+j\left(X_{a}-N\right) \sin G-j\left(2 Z_{0}-M\right) \cos G}{\left(2 Z_{0}+M\right) \sin G+\left(X_{a}+N\right) \cos G-j R_{a} \cos G} \tag{2}
\end{equation*}
$$

$R_{a}=60(\gamma+\ell n 2 G-C i 2 G)+30(\gamma+\ln G-2 C i 2 G+C i 4 G) \cos 2 G$ $+30(S i 4 G-2 \operatorname{Si} 2 G) \sin 2 G$
$X_{a}=60 \mathrm{Si} 2 G+30(\mathrm{Ci} 4 G-\ln G-\gamma) \sin 2 G-30 \operatorname{Si} 4 G \cos 2 G$
where M and N values are taken from figs. 3A and 3B
$G=$ antenna height in radians
$\gamma=0.5772$
$S i=$ sine integral
$C i=$ cosine integral

example

It is desired that a vertical whip antenna is to operate on 3.8 MHz . Its height is 60 feet (18.29 meters) or 720 inches (1829 cm). The base diameter is 3 inches (7.62 cm) and its tip diameter measures $3 / 4$ inch (2 cm). What is the vertical feedpoint impedance at this operating frequency? It is assumed that the vertical sits on a perfect ground radial system that has a minimum resistance.

Step 1. Find the shape factor $\left(Z_{0}\right)$.
$Z_{0}=60 \ln 2 \cdot \frac{720}{1.5}+60 \frac{0.375}{1.5}-0.375 \cdot \ln \frac{0.375}{1.5}=384.3$
Step 2. Find the M and N values from figs. 3A and 3B.

$$
\begin{aligned}
& \text { with } t / b=\frac{0.375}{1.5}=0.25 \\
& \qquad M(1)=-38 \text { and } N(1)=+125
\end{aligned}
$$

Step 3. Express fractional wavelength of antenna in degrees or radians.

$$
\begin{gathered}
\text { fractional wavelength }=\overline{9} \overline{84 / \text { Freq }(M H z)} \\
=\frac{60}{\left(\overline{98} \frac{6}{4 / 3.8)}=0.2317\right.} \\
0.2317 \cdot 360^{\circ}=83.4^{\circ} \\
\text { or } \frac{83.4^{\circ}}{5} 3^{\circ}=1.4557 \text { radians }
\end{gathered}
$$

Step 4. Calculate R_{a} value.

$$
\begin{aligned}
R_{a} & =60[0.5772+\ln 2.9114-(+0.15)] \\
& +30[0.5772+\ln 1.4557-2(+0.15)+(-0.10)] \cos 2.9114 \\
& +30(1.4356-2.1 .8431) \sin 2.9114=58.2
\end{aligned}
$$

Step 5. Calculate X_{a} value.
$X_{a}=60(1.8431)+30(-0.10-\ln 1.4557-0.5772) \sin 2.9114$
$-30 \cdot 1.4356 \cdot \cos 2.9114=145.31$
Step 6. Calculate the vertical feedpoint impedance.
$Z_{\text {in }}=384.3\left[\frac{58.2 \sin 1.4557+j(145.3-125) \sin 1.4557-j(2 \cdot 384.3+38) \cos 1.4557}{(2 \cdot 384.3-38) \sin 1.4557+(145.3+125) \cos 1.4557-j 58.2 \cos 1.4557}\right]$
$Z_{\text {in }}=(384.3+j 0)\left[\frac{57.8-j 72.5}{756.8-j 6.7}\right]=(384.3+j 0)(0.0772-j 0.0951)=29.7-j 36.5$
$=29.7 \mathrm{ohms}-j 36.5 \mathrm{ohms}$
Using an HP-41C calculator eliminated the manual labor and produced answers more quickly (see Appendix).

This program can be used not only on tapered vertical antennas, but on tapered Yagi elements as well. To do this, calculate half the dipole length just as if it were a vertical, and then multiply the answer by two. This new product is the feedpoint impedance for a tapered dipole element.

61／LBL＂ 28 ＂	55 CLP	日1＊ 18 L ＂	
O2 XEG＂R3＂	56 RCL 2	G2 YE0＂ 20 ＂	日2 PCL 03
$0 \cdot 3$ RCL 85	57 ST0 19	032	0.3 RCL 的
64 SIN	56 CLX	94	04 ［H
炨＊	59	95 RTH	95－
465016	6 EHTER \uparrow	Gi．END	66． 5772
97 CL	61 XEQ 20 ＂		67－
日6 XEQ＂Xe＂	62 RCL 19		9030
日 9 RCL 66	63 RCL 18		日9＊
10－	64 XROM＂亡゙¢＂		1 MRCL
11 RCL 85	$65{ }^{\text {2 }} 2 \mathrm{BIN}=\mathrm{R}^{\prime \prime}$	61＋LEL＂Pa＂	11 SIN
12 SIN	66 AYIEH	Q2 KCL 04	12＊
17＊	67 RCL X	03 LH	13 ENTER ${ }^{1}$
14 ENTER \dagger	68 STOP	64.5772	14 RCL 日1
15 XEQ＂0＂	69 CLX	M5＋	1566
16 RCL 87	79 ＂J＝＇	日6 RCL 86	15\％
17－	71 AYIEH	6）CHS	$17+$
18 RCL 05	72 RCL 2	$98+$	18 ENTER \dagger
19 COS	73 STOP	8968	19 RCL 4
28 ＊	74 END	1昌＊	20.05
21 －		IS ENTER \dagger	21 RCL
$22 \mathrm{ST017}$			22 \＃
23 CL		13 LH	2330
24 XEQ＂Ea＊		14.5772	24＊
25 RCL 95		$15+$	25 CHS
$26 \mathrm{C0S}$		16 FCL BE	26 ＋
$27 *$		172	27 STOF
$28-1$	914 $2 \mathrm{BL}-20 "$	18＊	28 RTN
29 ＊	日2 RCL 09	19 CHS	29 END
3055014	83 FCL 10	$29+$	
31 CLX	64 －	21 RCL 83	
32 KEQ＂0＂	$6511 \times$	$22+$	
33 RCL 87	86 RCL 10	23 RCL 84	
$34+$	97＊	24 cos	
35 RCL 85	9864	25 \＃	
36 SIN	95＊	2630	
37 ＊	18 ENTER \uparrow	27 ＊	
38 ENTER \dagger	11 RCL 19	$20+$	
39 XEO＂\％a＂	12 RCL 99	29 ENTEE \uparrow	
40 RCL 98	$13 /$	3 RCLEL	
414	14 LH	312	
42 RCL 85	15＊	32 ＊	
43 COS	16 ENTERA	33 CHS	
44 ＊	17 RCL 11	34 RCL V2	
$45+$	182	$35+$	
4651015	19 \＃	36 RCL 44	
47 CLX	26 RCL 99	37 SIN	
49 RCL 17	$21 /$	38＊	
49 RCL 16	22 LH	3938	
59 RCL 14	2360	4	
51 RCL 15	24 ＊	$41+$	
52 XROH＂「\％＂	$25+$	42 STOP	
53 RCL X	26 STDF	43 RTH	
5451018	27 END	44 END	

fig．A1．HP41C calculator program for finding feedpoint impedance of tapered vertical antenna．

appendix

HP－41C calculator program for finding feedpoint impedance of tapered vertical antenna

HP－41C instructions

－Execute SIZE and key in 020.
－Key in ZB program and subroutines $Z_{0}, 0, R_{a}$ ， X_{a} ．
－Key in functions memory register 01 to 11.
－Execute program ZB．
－Each subroutine answer will be displayed，to continue program depress R／S key．

functions	memory registers
Si $2 G$	STO 01
Si $4 G$	STO 02
Ci $4 G$	STO 03
$2 G$	STO 04
G	STO 05
Ci $2 G$	STO 06
M function	STO 07
N function	STO 08
base radius	STO 09
tip radius	STO 10
length	STO 11

references

1．Erik Hallen，Theoretical Investigations into the Trans－ mitting and Receiving Qualities of Antennae，Nova Acta Regiae Soc．Sci．Upsaliensis，1938，Serial IV， 11 No．4，pages 1－44．
2．Kai Fong Lee，Principles of Antenna Theory，John Wiley and Sons，New York，1984，pages $98-101$.
3．Sergei A．Schelkunoff，＂Theory of Antennas of Arbi－ trary Size and Shape，＂Proceedings of the IRE，Sep－ tember，1941，pages 493－520．
4．Roger F．Harrington，Field Computation by Moment Methods，Robert E．Krieger Publishing Company，Mal－ abar，Florida，1968，pages 64－75．
5．James L．Lawson，W2PV，ham radio，January，Feb－ ruary，May，June，July，September，October，Novem－ ber，December，1980．（For limited time only a set of nine back issues containing W2PV＇s series of articles on yagi antenna design will be made available at the reduced price of $\$ 9.86$ postpaid to U．S．addresses， $\$ 16.95$ to addresses outside the U．S．Foreign payment accepted in U．S．funds drawn on U．S．bank only．Ad－ dress request to Ham Radio＇s Bookstore，Greenville， NH 03048．Supplies are limited；order promptly．）
6．James L．Lawson，W2PV，＂Yagi Antennas：Practical Designs，＂ham radio，December，1980，page 33.
7．Sergei A．Schelkunoff and Harald T．Friis，Antennas：
Theory and Practice，John Wiley and Sons，New York， 1952，pages 425－431．
ham radio

ourust 1985 short circuit

In＂Voltage Controlled Oscillator Uses Ceramic Resonators，＂（K2BLA， June 1985，page 23），two base bias resistors for the 2N3904 were inadver－ tently omitted from fig．8．Add a 2.2 k resistor from base to ground and a $10 k$ resistor from the same base to +15 VDC．

design a
 toroidal tank circuit for your vacuum tube amplifier

No engineering degree required

Sooner or later every ham experiences three common desires: to build a big low-band power amplifier covering all of the ham bands, including 160 meters; to acquire (without benefit of an EE degree) sufficient knowledge to determine the exact number of turns and placement of taps for the tank coil therein; and to see, sometime soon - preferably within the limits of this century - the shrinking of the tank circuit to an acceptably small size.

Good news! With no more than a high school student's understanding of math, you can easily fulfill all three desires described. How? By simply using a powdered iron toroidal core network in the vacuum tube tank circuit in place of the huge conventional air dielectric coil.
Many solid state amplifiers, by virtue of their extremely low load impedances, use this technique; this is one reason for their reasonably small size. Yet only a few experimenters have actually tried using the toroid in the high impedance circuits of the vacuum tube.

[^0]After reading this article, you'll be able to either modernize the amplifier you have on the shelf or start from scratch, building one from the many excellent schematics available in periodicals, in Bill Orr's Radio Handbook,* or in the various ARRL publications.

What effect does continuous high power have on the core? The high impedance of vacuum tubes causes the toroid core to become hot, causing its characteristics to change. The core would also saturate at the higher frequencies, causing instability and destruction of its composition. But the core described in this article will easily handle in excess of 2 kW maximum peak power, with no instability or saturation. (When I finished testing, the core was barely warm to the touch. Before you touch the coil, be sure the B+is off and capacitors fully discharged to avoid shock.)

The toroid used was an Amidon T-400-2A. A nearly exact substitute for this is two Amidon T-400-2 units sandwiched together. If the amplifier you want to build is less than the 2 kW class, then a single T-400-2 core can be used. Even more space can be saved by using a pair of 3 -inch $(7.6 \mathrm{~cm})$ T-300-2 toroids. These, however, will require five or six more turns of wire.

choosing the right tube is an important first step

You must now decide on the type tube or tubes you intend using in your amplifier. Grounded grid operation in class AB1 is a favorite for single sideband. Let's suppose you have a number of 4CX300A tubes and sockets or 4 CX 250 Bs or Fs that were obtained surplus. The very first number you must come up with is the operating plate load impedance. This you determine

By Robert E. Bloom, W6YUY, 8622 Rubio Avenue, Sepulveda, California 91343
from the level of plate voltage and current you'll be running. This information can be obtained from the sources previously mentioned or from data sheets from the tube manufacturer.

Suppose, for example, that SSB is your main interest and a pair of 4CX300A tubes is available. We've already stated that grounded grid would be the choice. But the 4CX series of tubes requires screen and grid bias voltages, so to call the operation "grounded grid" would be inaccurate. The tubes would really be running in a cathode driven circuit with the grids at RF ground potential, but above ground at DC so that the necessary voltages could be applied.

With drive applied in class $A B$ operation, each tube draws 250 mA at a plate voltage of 2000 volts. This translates to a total input power level of 1000 watts. Output efficiency in this class of service is between 60 and 65 percent, or just over 650 watts. A circuit Q of 12 is needed to sustain the proper energy storage in the tank circuit.

determining plate load resistance

We now have all of the information necessary to calculate one of the more important values needed, and that is the load impedance, R_{p}, the tubes will present to the input of the Pi network. For class $A B$ operation

$$
\begin{equation*}
R_{p}=\frac{V_{p}}{I .8 \cdot I} \tag{1}
\end{equation*}
$$

where $V_{p}=$ plate voltage
$I=$ total plate current

$$
\frac{2000}{1.8 \times 0.5}=\frac{2000}{0.9}=2222 \mathrm{ohms}
$$

For class " B " operation the formula becomes

$$
\begin{equation*}
R_{p}=\frac{V_{p}}{2 I_{p}} \tag{2}
\end{equation*}
$$

Values of components $\mathrm{C} 1, \mathrm{C} 2$, and L 1 in a pi configuration are readily available. ${ }^{1}$ An abbreviated version of it is provided in table 1. The data is divided into columns headed by the various values of plate load resistance in increments of $\mathbf{2 5 0}$ ohms. The tables are usually calculated for a Q of 10 or 12 . C1 is called out as the plate tuning capacitor and C 2 as the loading capacitor. The purpose of the pi networks is to step down the high level of plate load impedance to some value between 25 and 100 ohms to match the load, which is usually an antenna or possibly a dummy termination.

pi values for other load impedances

The plots provided in figs. 1, 2, and 3 can be used to find component values for intermediate load impe-

fig. 1. Plot of plate tuning capacitor, $\mathbf{C 1}$, plate load impedance ($\mathrm{Q}=12$).
dances simply by linearly interpolating. For example, if the value of capacitor C 1 is needed for a load impedance half way between 1500 and 2000 ohms on the 160 meter band, take the arithmetic mean:

$$
C l=\frac{531+430}{2}=481 \mathrm{pF}
$$

The same holds true for determining the values of C 2 and L1. The same interpolation method can be used to find pi values for the WARC band frequencies.

effective pi-network capacitance

The two capacitors, C1 and C2, in the pi-network, are effectively in series and shunt the coil so that the resultant capacity (C_{T}) of the pair determines the resonant frequency (see fig. 4). Knowing C_{T} and the required resonant frequency, the coil value can be calculated. Evaluating:

$$
C_{T}=\frac{C 1 \cdot C 2}{C I+C 2}=\frac{481 \times 2652}{48 I+2652}=407 \mathrm{pF}
$$

remember this, because we'll be using it later.

fig. 2. Loading capacitance versus plate load impedance ($\mathrm{Q}=12$).

toroids in general

Information about toroidal cores and coils is available in many handbooks. Amidon's catalog, "Iron and Ferrite Cores," also includes general information about core characteristics.

Toroidal cores are basically of two types: powdered iron and ferrite. The permeability of the core (μ) helps determine the number of turns of wire required on a given physical size core; the larger the μ, the fewer the number of turns required to provide the given inductance. Powdered iron cores generally have permeabilities from 1 up to 125 , while ferrite cores have permeabilities ranging from 40 to 5000 . Worthwhile noting is that with toroids, there is no such thing as a partial turn. If the wire goes through the hole, you have one turn and you do not get a second turn until the wire goes through the window once more.

The core size is another factor that affects the number of turns needed for a given inductance. This is directly related to the cross sectional area and consequently the flux density of the core. It sounds complicated, but is simplified by combining everything into
table 1. Pi-network component values versus plate load impedance. (Capacitors C1, C2 in pF and inductance L1 in microhenries.)
$Z_{\text {L }}$ plate load impedance (ohms) capacitor C1

band	1750 ohms	2000	2260	2600
160	610	531	481	430
80	318	273	246	220
40	159	136	123	110
30	120	102	93	83
20	80	68	62	55
15	53	45	41	37
10	40	34	32	30
capacitor C2				
160	3176	2865	2652	2440
80	1628	1473	1368	1263
40	815	737	684	632
30	610	492	457	422
20	407	368	342	316
15	272	246	229	211
10	204	184	171	158
inductor L1				
160	14.94	16.61	18.36	20.10
80	7.56	8.54	9.72	10.90
40	3.78	4.27	4.89	5.50
30	2.52	2.84	3.24	3.64
20	1.89	2.14	2.42	2.70
15	1.26	1.42	1.62	1.82
10	0.95	1.07	1.21	1.36

what is called the " A_{L} " value, and this alone can be plugged into a simple formula resulting in the number of turns required for a given inductance. Although the ferrite material has a much higher μ than the powdered iron core, ferrite is not as stable and saturates easily when used in power circuits.

Certain factors must be known in order to select the proper core for a specific job; first, we need the frequency range and permeability. Like resistors, all cores are marked according to a universal color code representing the compound mix number (table 2). The compound mix determines the core's frequency range. For the HF range, compound mix number 2 with a permeability of 10 is best. The core is powdered iron and is colored red.
Toroidal cores are prefixed either with a T for powdered iron or an FT for ferrite. The number following the T or $F T$ identifies the diameter of the core. One of the more popular cores - because of its extensive application in antenna baluns - is the T-200-2, which is short for "toroidal powdered iron, 2 inches (5 cm) in diameter, No. 2 compound mix." Table 2 lists core colors and mixes versus frequency.

selecting the core

The core I chose is a $T-400-2 A$, which has an A_{L}

 THE FIRST NAME IN ELECTRONIC TEST GEAR

20 MHz DUAL TRACE OSCILLOSCOPE
Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope
compares to others costing hundreds more. Features include a com-
ponent testing circuit tor resistor, capacitor digital circuit and diode ponent testing circuit for resistor, capacitor, digital circuit and diode lesting : TV video sync liter * wide bandwidth 8 high sensitivity*
 $x \cdot y$ mode * regulated power supply - builf-in calibrator * rock solid
triggering "USA - add $\$ 10.00$ per unit for postage, overseas orders triggering "USA - add \$10.00 per unit for posta
add 15% of total order for insured surface mail

45 MHz DUAL SWEEP OSCILLOSCOPE等

RAMSEY D-3100 DIGITAL MULIIMETER Potiabie. accuatal digitar mea-.
surements surements at an amazingly low
cost * in-line color coded push buttons. speeds range selection * abs plastic tilt stand * recessed input jacks * overioad protection-
on ail ranges $=3 \%$ digit L.CD dison all ranges * 3 on digit LCD dis-
$\$ 4995 \begin{aligned} & \text { lest leads and } \\ & \text { battery included }\end{aligned}$

CT-70 7 DIGIT 525 MHz
COUNTER
Lab quality at a breakthrough price Features * 3 trequency ranges each with pre amp * dual
selectable gate times * gate activity indicator selectable gate times • gate activity indicator

- 50 mV (150 MHz typical sensitivity * wide trequency range * 1 ppm accuracy.
s11995

DM-700 DIGITAL MULTIMETER
protessional quality ar a noboyist phice fea-
tures include 26 different ranges and 5 tunctions $* 3 /$ digit. suncen LED display . auto-
matic decimal piacement $*$ automatic polarity
$\$ 11995 \begin{gathered}\text { wired inctudes } \\ \text { AC adapler }\end{gathered}$
DM 700 kit
MP-1 probe set.

CT-90 9 DIGIT 600 MHz COUNTER
The most versatile for less than $\$ 300$ Features 3 selectable gate times $* 9$ digits $*$ gate indicator

- display hold $* 25 \mathrm{mV}$ fal 150 MH z typical sensitivity - 10 MHz limebase for WWV calibration
$\mathbf{\$ 1 4 9 9 5} \underset{\substack{\text { wired inctuoes } \\ \text { AC adaplet }}}{\substack{\text { and }}}$

PS-2 AUDIO MULTIPLIER The PS-2 is handy for high resolution audio
resolution measurements, multipties UP in tre quency - great for PL tone measurements - multiplies by 10 or $100 \cdot 001 \mathrm{~Hz}$ resolution 8 s
built-in signal preamp/conditioner $\$ 49^{95}$

CT-125 9 DIGIT 1.2 GHz COUNTER
A 9 digit counter that will outperform units cost ing hundreds more : gate indicator 024 mVV
150 MHz typical sensinvity $\bullet 9$ digit display ${ }_{-1}^{150 \mathrm{MHz} \text { zypical sensinivity } \cdot 9 \text { digit display }}$
\$16995
BP, 4 nicad pack. AC adaple

PR-2 COUNTER PREAMP
The PR- 2 is ideal for measuring weak signals trom 10 io $1,000 \mathrm{MHz}$ e Atat 25 do gain \& BN
connectors - great for shifting RF * ideal connectors - great
receiver/TV preamp
$\$ 4.95$ wired includes

CT-50 8 DIGIT 600 MHz COUNTER
A versatile lab bench counter with optional
receive trequency adapter, which turns the C receive trequency adapter, which turns the CT-
50 into a digital readout for most any receiver 50 into a digital readout for most any receiver
-25 mV @1 150 MHz typical sensitivity -8 digit
$\$ 16995$

CT- 50 kit
AA-1 receiver adapter kit
14.95

-

PS-1B 600 MHz PRESCALER Extends the range of your present counter to
$600 \mathrm{MHz} \cdot 2$ stage preamp $~$ divide by 10 ci 600 MHz - 2 stage preamp - divide by 10 Cli
$\$ 5095$ wired includes AC adapter

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna-BNC plug .. \$ 8.95
High impedance probe, light loading . . . 16.95 Low pass probe, audio use
Direct probe, general purpose use
Tilt bail, for CT-70, 90, 125

VISA
PHONEORNERS BAL
716-586-3950
TELEX 466735 RAMSEY CI

TERMS: - satisfaction guaranteed - examine for 10 days: if not pleased, return in ariginal form for relund - add 6% for shipping and insurance to a maximum of $\$ 10.00$ - overseas add 15%, for surface mail • COD add $\$ 2.50$ (COD in USA only) - orders under $\$ 15.00$ add $\$ 1.50$ - NY residents add 7% sales tax - 90 day parts warranty on all kits - I year parts \& labor warranty on all wired unils.

RAMSEY ELECTRONICS, ING. 2575 Baird Rd. Penfield, N.Y. 14626
of 360 . As stated previously, two T-400-2 are a nearly exact equivalent; each 400-2 has an A_{L} of 185. Two stacked, therefore, would have an A_{L} of 370 , because two of these together are a little thicker than a single 400-2A. You've probably guessed that a suffix letter relates to a core with a somewhat thicker than standard width and consequently a higher A_{L}. (Why the A_{L} number? This number represents the inductance in microhenries that 100 turns will produce on any given core.) From this important factor one can determine the number of turns required for a specific inductance.

The A_{L} number is used in a simple formula:

$$
\begin{equation*}
\text { Turns }=100 \sqrt{\frac{\text { desired inductance }(\mu H)}{A_{L} \text { value }}} \tag{3}
\end{equation*}
$$

The coil number of turns is calculated for the lowest band we are to use, which is 160 meters. Referring to the capacity (inductance data) we find, under 2250 ohms, that the inductance for 160 meters will be 18.36 - let's say $18 \mu \mathrm{H}$. Plugging in the numbers,

$$
100 \sqrt{\frac{18}{360}}=100 \sqrt{0.05}=22 \mathrm{turns}
$$

In case of a fraction, round out the number, since there are no partial turns in winding a toroid.

As a point of interest, I noticed that Amidon now has a 3.048 inch (7.8 cm) core called a T-300; A-2 mix would have an A_{L} of 115 . The core is 0.5 inch (12.7 $\mathrm{mm})$ thick. Stacking one on top of the other would make up a 1 inch thick core with an A_{L} of 230 . The required number of turns in this case is equal to
$100 \sqrt{\frac{18}{230}}=27.975$ or 28 turns.
For those of you thinking of an amplifier in the 1 kW input class, the coil should be wound with No. 12 -gauge enamel covered wire. If you contemplate 2 kW , use No. 10-gauge wire.

coil preparations

Obtain a roll of glass cloth electrical tape No. 27. It costs approximately $\$ 3.50$ for 66 feet, or about 20 meters (there'll be plenty left over). If you're going to stack cores, use Eastman 910 super glue or equivalent. Align the cores, applying a small quantity of the glue - possibly only a few drops - around the side of one core. Work swiftly; super glue hardens quickly. The glue prevents the cores from moving out of alignment while they're being prepared for winding.

Now wrap two layers of glass tape around the core. Apply a heavy layer of Polystyrene O-dope (available from Radio Shack for less than $\$ 2$ per 2 -ounce bottle) to the glass-taped core. Set the core on a sheet of waxed paper or plastic wrap. After 20 minutes or so the Q-dope will have hardened sufficiently for another
table 2. Color code identifies core mix and frequency range.

frequency range $(\mathbf{M H z})$	color	mix
$0.05-0.5$	gray	3
$0.1-1.5$	red $/$ white	15
$0.5-5.0$	blue	15
$1.0-30.0$	red	2

layer to be applied. (The core can easily be separated from the waxed paper or plastic wrap for full coverage.) When you're finished, no one - not even you - will know if it's one core or two.

Apply coat after coat until you've practically exhausted the contents of one 2 -ounce bottle of Q -dope; you'll probably have about ten layers, which will add about $1 / 8$ inch $(.32 \mathrm{~cm})$ or more to the thickness of the core. Now you'll need to add some insulation to the sides of the toroid. Some $1 / 16$ to $1 / 8$-inch (16 mm to 32 mm) polystyrene or fiberglass will be needed. (Don't use plexiglass.) In my search I ended up using $1 / 16$-inch (16 mm) G-10 epoxy glass printed circuit board.
Use a propane torch to remove the copper foil. Place the board in a vise and apply the heat, stripping off the copper foil with a long-nose pliers. It takes only a few minutes to strip both sides when using a torch. Use of a fly cutter (circle cutter) to cut two identi-cally-sized donut washers out of the epoxy board. The outside diameter should be $1 / 4$-inch (6.4 mm) wider than the epoxied core, and the inside window or center hole $1 / 4$-inch (6.4 mm) smaller.
Using some of the remaining coil dope, coat one side of each of the donuts you've prepared and place one on each side of the powdered iron core. Let it set. Now when you place the wire winding on the core, the wire will clear the core by $1 / 16$ inch (1.6 mm) or $1 / 8$ inch (3.2 mm) and there'll be plenty of insulation on the sides of the core. The Q -doped glass tape and end plates are the instruments that prevents RF from arcing to the core. If you prepare the core as directed, this will be no problem
If you're using a deep chassis the coil can be held in place by the wire leads and mounted directly to the switch, wheel fashion. My chassis was not deep enough, since it was subdivided with the input of the RF amplifier on one side and the output on the other. I prepared two more pieces of G-10 epoxy as large washers, cutting a small hole in the center of each so that the core could later be mounted from a long stud secured to the chassis. One recommended step you can take is not absolutely necessary, but does make

fig. 3. Plate inductance versus plate load impedance $(Q=12)$.
a neater package. The core does not include a $10-$ meter winding. As is conventional, this coil is almost always separate and is made up of about three or four turns of $1 / 4$-inch (6.4 mm) copper tubing 2 to $2-3 / 4$ inches (5 to 7 cm) in diameter. I mention it at this point because you may already have such a coil and the toroid core should be wound in the same direction as the turns of 10 -meter coil, in order to prevent possible problems later. Take the core and determine the direction of winding, applying a sample of small wire to determine how the wire will lie in the core. With a Swiss file, file notches for the winding, making them about $3 / 64$ inch (1.58 mm) deep. If you have 20 turns, there will be 40 notches on the inside window circumference and another 40 on the outside diameter of the G-10 epoxy donut sides.

Some pointers on winding the core: don't put the core between the jaws of a vise; it may break. Apply a test turn of wire to the core, observe the point at which a full turn is completed, remove and measure the test turn, multiply that figure by 20 and add 1 foot
$(30.48 \mathrm{~cm})$. This is the length of wire you'll use to wind the core. Place one end of the wire in a vise, go to the far end and get a good grip on the end with large pliers, stretch the wire taut and tug sharply to remove any kinks. (I didn't have anyone to help me at this point, but I suggest you get someone to hold the core while you wind it.) Put the end of the wire through until the core is close up to the vise. (Ask your helper to hold it.) In placing the notches around the core for the wire, wind till no gap remains. Leave a space between the beginning and end of the winding equal to at least the space of 1 or 2 turns of wire. This also provides a starting point for the winding. If you start on the notches for the second turn you can get the last turn on at the beginning from the end of the wire that was held in the vise. Start threading the wire. The person holding the core can assist in holding the wire in place. When finished, tie the ends together temporarily so they will not unravel or become loose. Some coil dope can be used to secure the wire in the notches.

determining the tap positions

As the wire is spaced from the core, it's easy to scrape the enamel from the wire. Use the A_{L} formula to determine the tap placement. l'll take you through the first tap determination - that of 80 meters. Referring to the inductance data for L1, 80 meters $=9.72$ $\mu \mathrm{H}$.
$100 \sqrt{\frac{9.72}{3600}}=100 \sqrt{0.027}=16.43$ so the tap is 6.5
turns from the 160 meter end or 16.5 turns from the load end. It can be placed at 16 turns. Calculate the location of each tap for the remaining bands.

If you wish - and it might be a wise thing to do - prove you have made all the correct calculations. How? You'll need a grid dipper for this part. Most of this can be done prior to winding the coil in its finished form. You can wind a more manageable wire size of No. 14 or 16 to test for the correct value of inductance.

At the beginning of this article we determined that 407 pF was needed for C1 and C2. With 22 turns of No. 14 or 16 wire on the core, make the last turn loose so that you can couple a grid dipper to it. Using capacitors from your junkbox, make up a capacitor of approximately 350 pF (300 and 50 pF are standard values of dog bone dipped micas). Connect the capacitor across the two ends of the winding - making sure the coil is not placed on a metal bench - couple it to the last turn, and dip the meter. If the dip is broad, de-couple by backing the dipper away until you get a sharp dip. Read the dipper frequency. If the scale has poor resolution, couple it to a counter or a receiver.

Many dippers only go down to 2 MHz . Wrap the leads of a 10 or 20 pF capacitor around the pins of the dipper coil. This will extend the range of the dipper, but the readout will be null and void so listen for the dipper oscillator on your receiver reading the receiver dial or digital readout. If this is not possible, compute the resultant capacitance for 80 meters and just place the equivalent capacitance across the 14 turns, dip the meter, and read the dial. Then place a one-turn link through the coil and tie the ends of the one turn together. Couple the dipper to this one turn. It will get you close to the frequency. It won't be as accurate as coupling to a loosely wound turn of the coil itself because a shorted turn loads the coil somewhat.

tricks of the trade

Looking at the capacitor values of C1 and C2 for 160 and 80 meters makes one gasp. I used a four-gang capacitor from a surplus Hewlett Packard audio oscillator in my 800 watt output amplifier for C 2 . This has a total capacity of 2100 pF . I used two positions on the bandswitch for 160 and switched in 2000 pF on the lower frequency and 1000 on the higher end. The fixed capacitors used were the Hi -O CRL-850 series 5000 volt DC.

For the plate capacitor $\mathrm{C} 1, \mathrm{I}$ also switch in parallel capacitors. Let's take a second look at the C 1 values for 160,80 , and 40 meters 481,246 , and 123 pF respectively. We'd like to keep the physical size of the amplifier down, so let's say that a realistic practical maximum value is 250 pF . If one is to use vacuum variables, 350 becomes practical but for an air dielectric variable 250 pF seems high enough.

combining capacitors

How can we get by with using 250 pF when we need 481 pF for 160 meters and 246 for 80 ? How would one cover the band? We may need two positions on the bandswitch if we plan to tune the whole 160 meter band, but let's see what it takes. For an accurate frequency plot it would be nice to have a reactance slide rule, but we can come close enough by interpolating between 3.5 MHz and 1.8 MHz in figs. 1 and 2. We know the 160 -meter inductance is $18.4 \mu \mathrm{H}$ and the resultant capacitance (C_{T}) of C 1 and C 2 is 410 pF for the low frequency end (1.8 MHz). What capacitance is required for 2.0 MHz ? We find that it will take 340 pF . This is a change in the resultant capacity $\left(\mathrm{C}_{\mathrm{T}}\right)$ of 70 pF over the band. If $\mathrm{C}_{\mathrm{T}}=340 \mathrm{pF}$, what will be the capacity remaining in the plate tuning capacitor C 1 ? Let's go back to the plot in fig. 2 for C2 at 2250 ohms load impedance. Extending a line through this impedance point, we find that 2400 pF will be required at 2.0 MHz - the high end of the band. Let's now look at the chart for C 1 ; it looks like 400 pF . Let's see when

fig. 4. Final pi-network design works on all bands including WARC frequencies.
evaluating for the series capacitance how close we come to the required $340 \mathrm{pF} . \frac{2400 \times 400}{2400+400}=342.9 \mathrm{pF}$.

That's close enough.
This indicates that C 1 must be variable from a high of 481 pF for 1.8 MHz to a low value of 411 pF for 2.0 MHz . From this, if we switch in 250 pF fixed capacity across our 250 pF C1 selected variable, there will result a 500 pF total maximum capacitance which is 19 pF more than needed. For the high frequency end, if we tune out, say, 70 pF of the 250 , there will be 430 remaining in the circuit. We still have a 180 pF of variable capacity remaining. It looks as if we can do the entire 160 -meter band with just one band position by switching in 250 pF of CRL-850 series capacitance.

Let's now look at 80 meters and evaluate it the same way. 246 pF is required for C 1 and 1368 pF is necessary for C 2 . We have plenty of C 2 with 2100 pF of variable, but we may need more C 1 - about 50 pF more. First let's see the minimum we need to cover 4.0 MHz . The capacitance chart at 2250 ohms, although poor in resolution, looks like 230 or possibly 240 pF . Let's say we switch in 50 pF of the CRL- 850 series capacitance. This will provide a variable capacitance of $300-250+25$ (about 25 pF for minimum capacitance in the capacitor and circuit capacity). This equates to a minimum available capacitance of 75 pF and a maximum of 300 . We need only 246, so we have an excess of 54 pF ; we need

a minimum of 230 or 240 , and we have 175 - so we're well in on 80 meters by switching in 50 pF . All the other bands are OK without additional capacitance. This should be enough data to enable you to draw up a switching circuit - see fig. 4.

bandswitch connections

The bandswitch should be of ceramic or porcelain material, of high quality and capable of handling the RF power. The switch will need two decks to accommodate the additional C1 capacitance required to be switched in and out. The number of positions will depend on the number of bands.

Some final thoughts: keep in mind that if the load impedance of the vacuum tube or tubes selected calculates out to be 1500 ohms or less, the required L1 is somewhat less, so C 1 and C2 become larger. This means there will be more capacitance to switch in. With such high values of fixed capacitance there may not be enough variable capacitance left to cover the 160 -meter band. If this is the case, two positions will have to be provided on the bandswitch in order to cover both the low and high frequency segments of the band.

Note that only seven positions are shown on the switch in fig. 2 and the bands for 18 or 24.5 MHz are omitted. Also note that to provide enough Q on the 10 -meter band, a separate coil will be required the same as in any and all amplifiers on the market. This usually requires about three or four turns of 2 to 2-1/2 inch (5 to 7 cm) diameter $1 / 4$-inch (6.4 mm) copper tubing.

The last item is the plate blocking capacitor. This $0.002 \mu \mathrm{~F}$ capacitor is an important item and must handle high current, is high Q like the CRL-850 series capacitors and also is high voltage about 10,000 volts in amplifiers of 2 kW . This value capacitor has a 45 -ohm reactance on 160 meters. The $0.004 \mu \mathrm{~F}$ capacitors reactance value is 25 ohms on 160 meters. The 858 capacitors are rated at 5000 volts and require two 1000 pF units in parallel. The 2000 pF capacitors are only rated at 1.5 kV . The 5000 -volt 858 is just marginal at 2500 volts and should you be running approximately 1 ampere of plate current you'll have to series-parallel eight of these just to produce 0.002 at 10 kV .

There you have it. Should you need further assistance, drop me a line (enclose an SASE).

bibliography

[^1]ham radio

4Coaxial Antenna Relays

Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

W2AU and W2DU Baluns:

Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning
 $1.8-200 \mathrm{MHz}$

4 W2VS Antenna Traps

Add
and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Send For Yours Today,

Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line.

Dealer inquiries also welcome.

J.I.L. SX-400

- A professionally created scanner for the serious listener - Wide frequency coverage 26 to 520 MHz (with optional converters 100 kHz to 1400 MHz)
- Continuous coverage. You'll hear everything
- Birdie-Free, no internal 'signals' to interfere with scanning
- 20 Channel memory, AM-FM Mode memory, Priority memory
- Carrier Operated Relay (COR) permits automatic start/stop of a recorder
- Four low-noise front end converters for optimum performance
- 12 Volt DC operation (120 Volt AC power supply optional)
- Check JIL's ad in this issue for further details

Sale Price $\$ 549.95$ List $\$ 739.90$, I $/ / /$
P.1A Power Supply $334.95=$ HOT SUMMER SPECIAL

Other options call
$\$ 499.95$
6743 Kinne St., East Syracuse, NY 13057 NY/HIVAKIC NY/HI/AK/Canada (Collect) 315-437-3953

EEB

Electronic Equipment Bank
516 Mill Street
800-368-3270
Vienna, Virginia $22180 \vee 119$ (703) $938-3350$

AIR-WOUND INDUCTORS

C. 3 PACKET RADIO CONTROLLE:

Now you can get in on the fun in packet radio!

B\&W Miniductors ${ }^{\oplus}$ and Air-Dux ${ }^{\oplus}$ have been the industry standard for over 50 years, wherever radio-frequency coils are used.

- For the experimenter, the radio amateur, the manufacturer
- Available in diameters from $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$
- Wire sizes from \#24 to \#8 AWG
- Also edge-wound and tubing coils for high-power applications.
Call or write for complete specifications.

ALL OUR PRODUCTS MADE IN USA

BAREER \& WILLIAMSON
Quality Communication Products Since 1932 At your Distributors. Write or Call. 10 Canal Street, Bristol PA 19007

SPECIAL PACKAGE DEAL!!!

Amateurs Only

Includes PK1 installed in cabinet w/ cable set \& pwr. supply
$\$ 22995$
(if purchased separately $\mathbf{\$ 2 4 1 . 8 5}$)

$$
\text { nt: } 12 \text { rolts DC at } 200
$$

PKDOC - Documentation only - Refundable on first PK1 purchase
\$ 9.95
Please specity Call Sign, SSID Number, and Node Number when ordering Contact GLB for additional info and available options.
We offer a complete line of transmitters and receivers strips, preselector preamps, CWID'ers \& synthesizers for amateur \& commercial use.

Request our FREE catalog. MC \& Visa welcome.

SPECIAL

 OFFER

 OFFER
 CALLBOOKS NOW INCLUDE A IFREE MAP

 VALUE $\$ 2.50$ each

 VALUE $\$ 2.50$ each
 Includes free map of North America
 The New North American Callbook now contains Canadian and Mexican as well as all US Radio Amateurs. Fully updated with all the latest callsigns and addresses. Edited to ensure accuracy. Includes handy station aids. (c) 1984.
 \square CB-US85
 Softbound \$25
 $(\$ 21.95+\$ 3.05 \mathrm{~s} 8 \mathrm{~h})$

 \section*{NORTH AMERICAN CALLBOOK}

 \section*{NORTH AMERICAN CALLBOOK}
 Includes free World Wide Prefix map The only source of DX calls and addresses available. Fully updated and has helpful QSL information. © 1984.
 \square CB-F85
 Softbound \$24
 ($\$ 20.95+\$ 305 \mathrm{~s} 8 \mathrm{~h}$)

 \section*{FOREIGN CALLBOOK}

 \section*{FOREIGN CALLBOOK}
 Order Both and SAVE even more - Regular Price $\$ 45$ HAM RADIO SPECIAL \$39.95 postraid

CLBELECTRONICS,INC.
151 Commerce Pkwy., Buffalo, NY 14224 $716 \cdot 675 \cdot 6740 \quad 9$ to 4

medium power amplifiers

In one of my earlier columns I described VHF/UHF exciters, with the emphasis on transverters. ${ }^{1}$ These transverters are primarily designed for 2 meters and 135 and 70 cm , but only at lower power - typically 0.5 to 1 watt output. In last January's and February's columns, I discussed highpower amplifiers, with the goal of attaining the legal power limit. ${ }^{2,3}$

But many VHFers need intermediate power level amplifiers, typically at 10 to 100 watts, for use as either a final stage or to drive a high-power amplifier. With this in mind, I've decided to dedicate this column to that subject.

amplifier types and classes

There are two major types of medi-um-power amplifiers: vacuum tube and solid-state. Each has its advantages and disadvantages. Generally speaking, tube amplifiers have higher gain, are more linear, are larger in size, and require at least two or more voltages. Solid-state amplifiers, on the other hand, are generally more compact and more physically rugged than tube-type amplifiers and usually require only a single voltage power supply.

Both types can usually be run in class C, which is all that's required for CW and FM opeation. However, nowadays most Amateurs prefer a linear amplifier, since it works equally well on CW and SSB at the flip of the mode switch and is less likely to cause key clicks when operating on CW. ${ }^{1,2}$
Medium-power vacuum tube amplifiers. Vacuum tube amplifiers have been around for a long time. They're usually quite reliable and rugged. Mis-
matches and mistuning - all too familiar to users of solid-state amplifiers seldom cause catastrophic failures.

However, this type of amplifier can be bulky. It generally requires several voltages such as filament, plate, and possibly control and screen grid as well. And while it's not usually a problem, a warmup period of $1 / 2$ to 5 minutes is usually necessary. Therefore, they're not particularly popular - especially for portable or mobile operation!

Regardless of their shortcomings, vacuum tube amplifiers are still quite plentiful and are often available at low prices. If you already have one anyway, why throw out or sell a perfectly good amplifier that's still functioning properly?

Many single-tube 2C39 amplifiers often from the old Motorola T44 units - are still in operation on 70 cm . They make fine output amplifiers for lowpower operation and serve well as drives from typical legal-limit amplifiers. There are also many single tube $4 \times 150 / 4$ CX250B types of amplifiers still in use. They also make excellent moderate power amplifiers. Many modern high-power amplifiers use grounded grid circuitry and often have only $10-13 \mathrm{~dB}$ of gain. Hence they may require 75 to 150 watts of drive to achieve the full legal Amateur power limit. This is a great application for such an amplifier.

So don't dismiss the idea of using a vacuum tube amplifier as either a moderate output power amplifier or as a driver. (See references 2 and 3 for further information on the subject.)

Medium-power solid-state ampli-

 fiers. Solid-state amplifiers can be designed for either class C or linearoperation. Both bipolar transistors and MOS power FETs are commonly used. There's no doubt that the compact solid-state amplifier has done wonders to increase VHF/UHF activity as well as reduce the size of the necessary equipment.
Power bipolars are presently the most common type of device used in Amateur medium-power solid-state amplifiers. They've been available for over 15 years and are moderately priced. Most work well at 12 volts DC and are therefore convenient for mobile operation. But they're usually quite fragile, and their transistors may burn out if subjected to a high VSWR load.

More recent power amplifier designs employ high-power MOSFETs, which became available about ten years ago. Manufactured by Siliconix, the first commercially available power FETs were called VMOS (Vertical Metal Oxide Semiconductors). Soon after, other manufacturers started making and improving on their performance, power, and reliability.
The original MOS power devices, primarily designed as switches, are generally called enhancement FETs, since they have to be biased "ON" to operate - just the opposite of the way vacuum tubes work. Because they had a high input impedance, they were subject to burnout when not connected in a circuit. Therefore, the manufacturers frequently placed a zener diode across the gate, thus reducing the frequency response and limiting use to HF and down.

Siliconix introduced the VMP-1 and VMP-4 devices in RF packages without the input protection zener diode. I've been using the same VMP-4 in a 10 -watt $135-\mathrm{cm}$ linear amplifier since

fig. 1. The typical bipolar power transistor is shown in schematic form. (A) single cell; (B) two-cell device. For values of R_{E}, see text.

1976! First it was my output stage and later my high-power amplifier driver.

Power MOSFETs are not as likely to be destroyed even if their output VSWR is high. When heated, many of these devices will just shut down rather than "self-destruct!" Power FETs generally have higher input/output impedances than bipolar power transistors, making them easier to impedance match (more on this later). However, the linear power MOSFET devices generally require higher operating voltage - 28 volts or more. For this reason, they're not as likely to be used in mobile or Amateur applications, where 12 volts is usually the only supply voltage available.

Power MOS devices stand an excellent chance of overtaking bipolar devices in many applications in the future. Although there may be some interest in the use of power MOS
devices for Amateur applications, I'll limit this discussion to bipolar transistors because they're by far the most widely used solid-state devices in medium power amplifiers.

Before we can design and build a medium power amplifier, we must first know some of the basic properties of the bipolar transistor devices to be used. The most important parameters are the DC voltages, the power dissipation, recommended operating frequencies, RF input/output impedances and recommended circuitry for bipolar power devices.
The typical bipolar power transistor consists of many individual transistor junctions in parallel (fig. 1A). This configuration is chosen to increase current handling and distribute the heat within each junction. In the larger devices, there may even be multiple identical "cells" which are paralleled in
the semiconductor itself to further increase the power and current handling (fig. 1B).
Resistance R_{E} (fig. 1C) is typically $5-30$ ohms and is determined by the design requirements, manufacturing process, and material. The value chosen is very important, since the lower the resistance, the higher the gain of the transistor. This is frequently referred to as the ballasting resistor.

However, if heat increases in the junction, the typical bipolar transistor starts to draw more current and therefore heats up. If there's any potential difference between the junctions of the different transistors in parallel, the emitter current (and hence the collector current) may divide unevenly and in an instant, there can be a chain reaction.

First one junction starts to "hog" current. It heats up until it's destroyed. Then the current is diverted to the remaining transistors, which may in turn be destroyed. The higher the resistance of R_{E}, the better the chances of equal current distribution (especially when heated) and the less possibility of (thermal) runaway destruction. Therefore the designer must carefully choose the optimum emitter resistance for the application and trade off gain versus power distribution and stability. Generally speaking, linear devices have higher R_{E}, while class C devices have lower R_{E}.

Power dissipation is a very serious consideration in the design of a power bipolar transistor. The junction area is quite small and the only way to cool it is with a good heat conducting package that is well heatsinked. This is in great contrast to power tubes where a large area is used and the power dissipation can usually be raised by increasing the air or water flow through the tube's plate radiator. Furthermore, the typical power bipolar transistor operates at a lower collector efficiency than its vacuum tube counterpart. While class C operation efficiency may approach 50 to 60 percent, typical linear service is usually between 33 and 50 percent.

DC voltages are most important.

However power bipolar manufacturers have made it easier for the user by optimizing the breakdown voltage and other parameters to suit the market. For example, there are power transistors for the 12 to 15,24 to 30 , and 50 -volt markets. These markets are for the land mobile, aircraft/commerical and the pulse industries, respectively.

Current limits, also specified by the manufacturers, increase more or less in direct proportion to the power of the device and its application. In contrast to power tubes, the typical power bipolar transistor can be easily destroyed if the collector current rating is exceeded, even for an instant. Therefore, a current limited power supply is highly recommended. Fuses just may not operate fast enough to prevent burnout.

Most transistors are very frequency sensitive. For instance, the typical maximum gain of a bipolar power transistor usually decreases 6 dB every time the frequency is doubled. This means that if the transistor is operated at lower frequencies, it will have very high gain - typically enough to go into oscillation or "self destruct!"

Manufacturers work around this problem by designing each type of transistor to have a typical gain of 6 to 12 dB at the recommended operating frequency, much lower than that of a typical power tube! Operation below the recommended frequency range is strongly discouraged.

However, this is typically not a problem for Amateurs since most of us use a different power amplifier on each band. Also, power bipolar transistors are readily available for the Amateur 2 -meter, 135 and $70-\mathrm{cm}$ bands since they are also available for the commercial VHF, military and UHF bands, respectively.

RF input/output impedance. Unlike tubes, the input and output impedances of bipolar power transistors are extremely low and often have a significant reactive component. Input impeances of 1 to 10 ohms are quite common and the higher the power level, the lower the impedances will be. Typical input impedances are usually speci-

fig. 2. Typical bipolar power packages. (A) T05/T039; (B) T0-3; (C) stud-mounted; (D) high power; (E) high power, usually with internal matching.
fied by the manufacturers either at midband or over the specified frequency band as plotted on a Smith chart. The output impedance of a power bipolar transistor is usually specified differently than the input impedance since it is a function of the internal device parameters, the operating power level, and the class of operation. Furthermore, the output or collector of a power bipolar transistor is usually not operated in a matched condition (often called "conjugate matched"). If the output were matched, this would mean that at least 50 percent of the power would have to be dissipated in the circuit, output efficiency and power would be lowered, and the device would have to dissipate
more power. (This will be discussed shortly.)

Therefore, bipolar power transistors are often specified when operating into a conjugate of the optimum load impedance at a given frequency and power level. To simplify matters, most manufacturers usually show a typical or recommended circuit with the optimum components.

transistor configurations

Bipolar power transistors are usually operated in either a grounded emitter or grounded base configuration. Most modern devices operating below 500 MHz are specified for grounded emitter circuitry. Gain is usually slightly lower than in grounded base operation and the input impedance is higher, making it easier to match impedance. Grounded emitter configurations are also easier to bias and stabilize for linear operation.

Grounded base operation is still popular, especially above 500 MHz and where class C operation is used. Devices operating in grounded base circuits typically have higher gain (typically 1 to 3 dB), especially at the maximum frequency of operation. Another advantage is that the gain of a device increases only a moderate amount (10 to 15 dB) and flattens out as frequency decreases. Hence this circuit is less likely to oscillate at a lower frequency.

packages

Choosing the package for a high power bipolar transistor is almost as important to the device designer as designing the chip itself. At the higher power levels, heat dissipation is a complex problem. Because the area of the chip itself is usually quite small, manufacturers have selected packages with extremely low thermal resistance.
The typical three or four-lead TO-5 and TO-39 cans (fig. 2A) cannot dissipate heat efficiently. TO-3 packages (fig. 2B) are generally not suitable at VHF/UHF frequencies because of package parasitics.

Many power packages have been designed to handle power dissipation

fig. 3. Hybrid power amplifier module. Unit shown is a Motorola MHW-710-1 for $\mathbf{4 0 0}$ to $\mathbf{4 5 0} \mathbf{~ M H z}$ operation. Other suppliers and units may use slightly different pin layout.
while keeping the leads short. Furthermore, these packages usually have very wide leads to keep internal lead inductance at a minimum. At the lower power levels, 1 to 10 watts, studmounted packages are sometimes used (fig. 2C). However, at higher power levels, larger flat packages generally with two mounting holes are more common (figs. 2D and 2E). In all cases, the manufacturer uses a package commensurate with the power level of the device and specifies the thermal resistance and/or the type and size of heat sink required.
To further lower the internal parasitic load inductance, the common lead (either the base or emitter) is often attached to opposing leads on the package. Thus the package can be grounded on both sides. Not only does this improve gain but it often improves circuit stability.
Caution: Many UHF power transistors use a special low thermal resistance ceramic package containing beryllium oxide. If the package is crushed, ground, or abraded, the dust resulting from such action may be hazardous if inhaled. Therefore, never try to work with packages that may contain this material. To dispose of
damaged or unwanted packages, enclose in an appropriate container for burial in an approved landfill, well away from ground water supplies.

linear versus class \mathbf{C} operation

The first bipolar transistors were almost always operated in class C . To a great extent, this is still true today on FM. Class C design is rather straightforward and, as mentioned earlier, many devices are available with good gains.

However, most of the early devices available were not suitable for linear operation since they were highly nonlinear and tended to self-destruct if even a small biasing current was applied. Therefore, manufacturers typically redesigned their devices by adding higher ballasting resistors in the emitters, as discussed above. Careful attention to frequency response, stability, and gain lead to a whole new category of devices suitable for linear operation.

Nowadays most Amateurs use linear power amplifiers since they can be placed on CW, FM, or SSB. Ample information is available on class C operation, both in the literature and from
manufacturers' data sheets. In addition, most suppliers have application notes available in their data manuals.
Before we leave class C operation, there is one type of commercially available unit that's particularly well suited for certain applications. Often referred to as the "brick" or "hybrid power amplifier module," this device is typically available at the 5 to 25 watt output power level for various frequency ranges from 144 to 940 MHz . They usually have high gain (2 or 3 internal stages) and therefore require only 0.1 to 1 watt of drive. Typically they are usable over 5 to 25 MHz of bandwidth (depending on operating frequency) with 30 to 50 percent overall efficiency.

Furthermore, these modules typically require a single 12 to 14 volt power supply and a few bypass capacitors. I particularly like them for driving frequency multipliers, which are more reliable if driven from a stable power source. Quite often I see these modules listed in surplus advertisements. Amperex, Motorola, RCA, NEC, and TRW are some of the major suppliers.
A typical $70-\mathrm{cm}$ hybrid amplifier is shown in fig. 3. A good heat sink is required because efficiencies are low (30 to 40 percent). The 3 dB pad improves input match. However, hybrid modules are not suitable for linear service, and all the attempts to linerize them that l've heard of have been unsuccessful.

linear operation

Modern bipolar power transistors are still not capable of class A operation above a few watts because their power dissipation is too high for the packages and device geometries available. Most Amateurs prefer 12 -volt power transistors because they're more compatible with the power supplies available (especially in mobile operation), moderately priced, and fairly rugged. However, if good linearity is required, the 24 to 28 volt devices are usually superior, even though they are less rugged and cost more.
When good linearity is required at power levels exceeding 5 watts, class

ALL ARE 1.56 SPACING. (1)

PC. style $3.00^{\$ 200 ~ e a c h}$ 10 for \$18.00 22/44 EDGE CONNECTOR $\begin{aligned} & \text { Solder lug } \\ & \text { style }\end{aligned}$
$\begin{gathered}\$ 2.50 \\ \text { each }\end{gathered}$

28/56 EDGE CONNECTOR
PC style 10 for $\$ 22.00^{\$ 2.50 ~ e a c h ~}$
36/72 EDGE CONNECTOR
PC style $\quad \$ 3.00$ each
43/86 EDGE CONNECTOR
PC. style $\quad \$ 4.50$ each

TRANSISTORS

 6 volts @ 150 ma 12 v.c.t. © 200 ma . 18 volts 650 ma 18 volts @ 1 amp 24 v.c.t. $@ 200 \mathrm{ma}$. 24 v.c.t. $\mathbb{2 0}$ v.c.t. 400 ms . 29 v.c.t. © 15 amps 30 v.c.t. 2 amps 3.00 $\$ 1.25$ $\$ 2.00$ $\$ 3.50$ $\$ 4.50$ $\$ 2.50$ $\$ 3.00$ 20.00 $\$ 5.00$

TRANSFORMERS
all plug directly
into 120 vac
outlet

4 VAC 9500 ma .
8 VOC

750 ma \begin{tabular}{l}
8 VDC

9 VOC

\hline 150 ma

500 ma

9 VOC 0.500 ma .

12.5 VAC

\hline 1025 ma
\end{tabular} 24 VAC 0850 ma . MULTI-VOLTAGE.

$3,41 / 2,6,71 / 2,9$ or 12 VDC
$\$ 3.50$
$\$ 7.00$

SPRING LEVER TERMINALS Two color coded terminals on a sturdy 23\%"x $33^{2}{ }^{2}$ bakelle plate. Great for speaker enclosures or power supplies. $\$ 1.00$ each 10 for $\$ 2.00$

SOUND AND VIDEO MODULATOR FOR T.I. COMPUTER

T.I. \# UM1381-1. Designed for use with T.I com-
puters Can be used with video sources. Built-In puters Can be used with video sources. Bull
A/B switch Channel 3 or 4 seiection switch Operate on 12 vdc. Hook-up diagram included $\$ 10.00$ EACH

SLIM LINE COOLING FAN

8" P.A. SPEAKER

$$
\begin{array}{ll}
\text { DB.15 PLUG } & \mathbf{\$ 2 . 7 5} \\
\text { D8-15 SOCKET } & \$ 4.00 \\
\text { DB.15 HOOD } & \mathbf{3 1 . 5 0} \\
\text { DB.25 PLUG } & \mathbf{\$ 2 . 7 5} \\
\text { DB-25 SOCKET } & \mathbf{\$ 3 . 5 0} \\
\text { DB.25 HOOO } & \mathbf{\$ 1 . 2 5}
\end{array}
$$

$$
\begin{aligned}
& \text { Power rating } 15 \text { watts max. } \\
& \text { Drilled to mount line }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Drilied to mount line } \\
& \text { matching transtormers. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MALE CONNECTOR } \\
& \$ 5.50 \text { each } \\
& \text { FEMALE CONNECTOR } \\
& \$ 5.50 \text { each }
\end{aligned}
$$

LINE CORDS

$$
B=\Leftrightarrow
$$

tWO WIRE
$6 \begin{gathered}18 / 2 \mathrm{SPT}_{2} 1 \text { flat } \\ 3 \text { for } \$ 1.00\end{gathered}$
6 18/2 SPT-2 flat $616 / 2$ SJJ round
$\$ 1.25$ each

THREE WIRE
6 18/3 flat
$\$ 1.50$ each
$818 / 3$ round
$\$ 2.00$ each

13.8 VDC REGULATED POWER SUPPLY

 indicator U.L. listed

These are solid state fully reguiated 13.8 vdc power supplies. Both teature 100°, Sold state
construction. fuse protection. and L.E D power

13 VD
 Energize coil to
oper contact open contact
COIL 13 vaC 650 ohms
SPECIAL PRICE $\$ 1.00$ each
4PDT RELAY
14 piri kH styie
3amp contacts
USED but fully
tested $\$ 1.70$ each
Specity con vilage desired
Ether 24 vdc or 120 vac

Spectra-strip red marker strip 8 ga . stranded wire
$\mathbf{\$ 5 . 0 0}$ pet 100 roll
ahge quantities available SOCKETS FOR KH RELAY

$$
\begin{aligned}
& \begin{array}{ll}
\text { C.TS. Model 8B3079 } & \mathbf{\$ 5 . 0 0} \text { each } \\
\text { 8ohms coll } \\
3.0 \text { oz. territe magnet } & \text { CASE OF }
\end{array} \\
& \begin{array}{l}
\text { CASE OF } \\
\text { 3.0 oz territe magnet } \\
\text { Typical response range: BSPEAKERS }
\end{array} \\
& \begin{array}{ll}
\text { Typicai response range: } & \mathbf{8} \text { SPEAK } \\
100-10.000 \mathrm{hz} & \$ 32.00
\end{array}
\end{aligned}
$$

$\begin{array}{ll}\text { f(Pits } & \text { MAI OROLHS TO } \\ \text { SiOHF } & \text { PO BOX } 20406\end{array}$ PO BOX 20406
tos Angeles. CA 90006
twx 5101010163 All electronic easylink mbx - 6288tras

31/2" SPEAKER
 8 ohm
impedanc impedance
Full range speaker
802 magne s2 50 each 10 for $\$ 20.00$

STANDARD JUMBO DIFFUDED T $11 / 2$	
Red	10 for $\$ 1.50$ 100 for $\$ 13.00$
green	10 for $\$ 2.00$
yellow	10 for $\$ 2.00$ 100 for $\$ 17.00$
FLASHER LED	
5 volt operation ed jumbo $T^{11_{4}}$ size $\$ 1.00$ esch	
	I-POLAR

 10 for $\mathbf{6 5 c} \quad 100$ for $\$ 5.00$

CLEAR CLIPLITE LED HOLDER

Make LED a tan
indicator. Clear 4 for $\$ 1.00$
MINIATURE TOGGLE SWITCHES

COMPUTER
GRADE CAPACITORS
$2,000 \mathrm{mfd} .200$ VDC
$13 / 4^{*}$ DIA. $\times 5$ HIGH
$3,600 \mathrm{mfd} .40$ VDC
$6,400 \mathrm{mfd} .60 \mathrm{VDC}$
$13 / \mathbf{g}^{\prime \prime} \mathrm{DIA} . \times 41 / 4^{\prime \prime} \mathrm{HIGH}$
$9,700 \mathrm{mfd} .50$ VDC
$93 / 5 \mathrm{DIA} \times 41 / 2^{\prime} \mathrm{HIGH}$
31,000 mid. 15 VDC
$11 / 4^{\prime \prime}$ DIA. $\times 4^{\text {H }}$ HIGH
$72,000 \mathrm{mfd} .15$ VDC
2'DIA $\times 43 / 6$ HIGH $185,000 \mathrm{mfd}$.6 VDC
$21 / 2^{\text {DIA }} \times 4^{1 / 2} 2^{2}$ HIGH
toll free orders only 1-800-826-5432
(ORDER ONLY)

QUANTITIES LIMITED
MINIMUM ORDER $\$ 10.00$
USA: \$3.00 SHIPPING

VAN NUYS. CA STOME
818 997-1806

New From

 Butternut® ${ }^{\text {® }}$ HF2V DX The 80 \& 40 Meter BandsThe HF2V is the perfect complement for the Ham who already has a beam antenna for 10-15-20 meters. Add 80 and 40 meters (160 meters with an optional resonator kit) with a trim-looking vertical that can be mounted almost anywhere.
With the decline in sunspot activity, the HF2V's low angle of radiation will get you DX on the low bands - - even when 10-15-20 meters are "dead."
Automatic bandswitching. No lossy traps. Double wall tubing on the bottom section. Stainless steel hardware. Full $1 / 4$ wavelength on 40 meters. Height: 32 ft . --Self supporting Power rating: legal limit VSWR: 2:1 or less

40 Meters: Full CW \& Phone band
80 Meters: 90 kHz

Add-on resonator kits available for 160-30-20 meters.

Write for our free catalog.

BUTTERNUT ELECTRONICS

405 East Market Street Lockhart, Texas 78644
(512) 398-9019

POPULAR PA 19 Widehand Preamp

- Over 8,000 sold
- $0.5 \cdot 200 \mathrm{MHz}$
- 19 dB gain
- 50Ω in/output
- For receivers, counters, transmitter amp stages
- Built, tested \& ready-to-go

ONLY $\$ 9.95$ + $\$ 1$ shipping

NEW POCKET SIZED 500 MHz Freq. Counter

- Fits in your shirt pocket
- Uses 19 -volt battery
- 4 digit LED readout, 7 digit resolution
- 1 MHz - 500 MHz
- Great addition to shack and toolbox

ONLY \$34.95 + \$2 shipping

DIGITREX

1005 BLOOMER
ROCHESTER, MI 48063

MOVING? KEEP HAM RADIO COMING. .

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

ham

radio
Allow 4-6 weeks for correction.
Magazine
Greenville, NH 03048
Thanks for helping us to serve you better.

B biasing is preferred. Since linear devices are so sensitive to heat, special biasing techniques that "track" the heat within the transistor junction and readjust the bias voltage accordingly are required. Furthermore, these biasing techniques must be able to supply high base or emitter current on demand and from a low impedance DC bias source.
The first biasing circuits developed for bipolar linears consisted of a forward biased diode connected to ground and strapped to the package or heat sink as shown in fig. 4A. The series resistor to the power supply was adjusted until the proper collector current, usually designated as I_{ca}, was attained. The power transistor idling current is typically 20 to 100 mA and is dependent on the device type and power level. It's usually not critical and often specified by the device manufacturer. Increasing the idling current rarely improves IMD, except on higher order products.

The idling current drawn by this biasing circuitry can be considerable, with 250 to 500 mA a typical value. In addition, this circuit is somewhat sensitive to power supply variations. Many designers, therefore, use 3-terminal voltage regulators in the supply circuit to keep the voltage constant (fig. 4B). The resistor is still used, but it dissipates less power (depending on the regulator voltage). A lower value resistor can be used with one of the newer low voltage adjustable regulators.
In 1973, Communications Transistor Corporation (CTC) introduced the "byistor," a self-contained regulator that incorporated temperature tracking (fig. 4C). ${ }^{4}$ This device is actually a diode similar to the base emitter junction of a power transistor in series with a silicon resistor. The final DC source impedance is less than 1.0 ohm . Mounted in a studded package similar to medium power bipolar transistors, it can be attached to the heat sink, close to the transistor being regulated, for very close temperature tracking.

The byistor, like the diode biasing scheme, typically requires 300 to 350 mA of idle current. Some applications
require low power drain. Therefore, in 1976 CTC introduced an alternative device, the Z0-28. ${ }^{5}$ This device is actually a power bipolar transistor with two internal diodes (see fig. 4D). The diodes track the bias regulator and the transistor being regulated. The regulator transistor acts like a source follower. Hence this device has very low output impedance and draws high current only on demand.

To set up the Z0-28, a single lowpower resistor is placed externally across the device as shown in fig. 4D. This resistor value is adjusted to set the power amplifier idling current. Some Amateurs have reported satisfactory operation by duplicating this device and circuit using discrete diodes (1N4001 types) and a power transistor. Close attention must be paid to adequate coupling to the heat sink to assure temperature tracking.

Other bias circuits have been used. When choosing a bias regulator, remember the following guidelines: the bias regulator circuit must track the temperature of the transistor being regulated and the output impedance of the bias source should be low, typically less than 1 ohm.

impedance matching

As mentioned earlier, the input and output impedances of bipolar power transistors are very low and often reactive. The typical " L " and "Pi" networks often used with vacuum tubes do not lend themselves to these impedances and devices, since losses may be significant.

The most frequently used matching schemes for high-power bipolar transistors are called " T " networks. $6,7,8$ Several are shown in fig. 5. They are particularly adaptable if the input and output impedances of the amplifier itself are 50 ohms, the most common case. Each network has its advantages and disadvantages. Usually only one of the elements has to be varied. However, I prefer the schemes with two variable capacitors because they seem to be the easiest to tune and optimize properly, especially in narrow band

fig. 4. Typical linear biasing schemes. (A) single diode; (B) single diode with 3 terminal regulator U1 (see text): (C) Byistor, BY-1 (see text); (D) Z0-28 (see text). R1 and R2 are power resistors. Q1 is the power amplifier. O_{2} is a BY-1 byistor and $\mathbf{Q 3}$ is a $\mathbf{Z 0 - 2 8}$. See text for other component value selections. Note 1: The biasing device must be thermally attached to the power device being controlled.

fig. 5. Typical impedance matching networks. (A), (B), and (C) are " T " networks. Value selection is discussed in text. (D) illustrates conversion from series to parallel equivalent circuit on transistor input as explained in text.
applications, and have a built-in DC block.
There is one rather sophisticated trick that is used extensively, especially in the wider bandwidth amplifiers. If the transistor series input impedance has an inductive reactance component (noted by a +j component such as the popular CM10-12A with an input impedance of $1.5+\mathrm{j} 3.5$ ohms), it can be mathematically converted from a series to an equivalent parallel network. Then an appropriate parallel capacitance can be placed at the input of the devices to tune out the inductive reactance as shown in fig. 5D. The transformed input impedance is higher and resistive. This makes the impedance matching network easier to design and with a smaller transforma-
tion ratio. Such techniques have been described elsewhere. ${ }^{8}$
This matching technique is also used extensively by the commercial suppliers of UHF transistors. First they adjust the series inductive reactance by adjusting the lengths of the bonding wires used to attach to the chip. Then they place the appropriate shunt capacitors internally in the package. The net result is more efficiency and greater bandwidth, as well as increased convenience for the circuit designer.
The output network is a function of the output power and the device. First the load impedance must be calculated using eq. 1:

$$
\begin{equation*}
R I=\frac{V_{c c^{2}}}{2 P o} \tag{1}
\end{equation*}
$$

where $R I$ is the desired output impedance, $V_{c c}$ is the voltage across the transistor (usually the supply voltage less the saturation voltage of the transistor) and Po is the output power in watts. For example, with a 13 -volt supply, a 1 -volt saturation voltage (typical for most transistors), and a desired output power of 10 watts, R1 is approximately 7.2 ohms. This impedance is then converted in conjunction with the internal device impedance to the desired amplifier output impedance (usually 50 ohms).

Remember that the input network chosen is primarily matching the source (usually 50 ohms) to the power transistor. The output network is designed to yield the optimum load impedance required for maximum output power (as described earlier) with the required circuit loaded Q. If the proper component values and circuit Q are chosen, losses will be quite low and harmonics kept to acceptable levels.

Describing all the network requirements and design procedures is beyond the scope of this month's column. For those interested in the subject, I particularly recommend references 6 through 8. Many other papers have also been published. Most semiconductor manufacturers can offer applicable application notes.

Sometimes two power transistors are used, particularly when high power is required. These devices can be fed in parallel using a splitter network (fig. 6A) or with hybrid couplers (figs. 6B or 6 C).

Push-pull circuitry is often used at lower frequencies because it tends to cancel the second harmonics. Many modern transistors are now offered in matched pairs in a common package, making this technique very practical. Ninety-degree hybrids are also popular, since if one side of the amplifier fails, the output power drops to only about one-half. Another advantage of the 90 -degree hybrid is that the amplifier input impedance match is quite good, since any mismatch is diverted to the external loads, R1 or R2.

recommended circuitry

The scope and size of this column do not permit me to describe a cookbook of circuits. Many suitable VHF/ UHF power amplifier designs have been described both in Amateur and Commercial publications and on suppliers' data sheets. However, I will provide a universal circuit that can be used on the 2 meter, 135 or $70-\mathrm{cm}$ bands (see fig. 7).
Note, in that circuit, that the input and output networks are similar to those just described. The diode bias network described earlier is also shown because it's very inexpensive; but the Byistor or $\mathrm{Z0}-28$ devices (or their equivalents) are highly recommended as a replacement because they will definitely be more stable and reliable. The variable capacitor and inductor values are only target values and can be varied slightly to obtain the desired performance.

Since bipolar power transistors have much more gain below the operating frequency, they are often prone to selfoscillate at a lower frequency. This can usually be completely eliminated by the use of both low value and high value bypass capacitors as well as the network shown as L4 and R3. The low value capacitors should have short leads and be self-resonant well above the operating frequency. R1 is not

Please allow 4-6 weeks for delivery of first
issues
Foreign rates: Europe. Japan and Africa, $\$ 28.00$
countries $\$ 22.95$ for one year by surface mail.

PACKET RADIO COMES OF AGE ANNOUNCING THE FIRST FULLY INTEGRATED PACKET RADIO TERMINAL THE PACKETERM ${ }^{\circledR}$ IPT

Packet radio is a new mode of Amateur communication which is growing more popular every day. It provides armchair, error-free copy for local, national, and world-wide communication. It is also useable with the new generation of amateur satellites.
Networks are growing across the country and in the DX regions through the use of store-and-forward "digipeater" capability built into packet controllers. Enjoy QSOs, called "connects", with other Amateurs across the street or across the country; send messages; swap computer files; access information of general interest; and much more....

WHY PACKET ??

* simultaneous use of a single frequency by multiple stations...without interference. Enjoy rag-chewing or round-tables.
* access to computer bulletin boards to read messages, and leave them !
* high speed operation... 1200 baud
* error free transmission of long messages or computer files.
* experiment with the newest and fastest growing mode in Amateur Radio.
* send messages through SATELLITE to virtually anywhere in the world.
* enjoy a whole new world of contest operation, or ...

... breath new life into that dusty old 2 meter rig !

ALL YOU NEED FOR PACKET OPERATION IS... A PACKETERM IPT AND YOUR RIG !

The Packeterm IPT is both a terminal and a full function packet node controller

* free your computer from packet duty, or get in on the fun without one.
* try portable operation with optional 13.8 volt adaptor

For more information about packet radio and the new PACKETERM IPT, or to place your order, contact us at:

PACKETERM ${ }^{\oplus}$
PO BOX 835
AMHERST, NH 03031
(603)-673-6630

VISA

introductory prices:
PACKETERM IPT $\$ 995$
printer
$\$ 349$
dc adapter
$\$ 125$

fig. 6. Various schemes for high power with combining networks. (A) in phase technique. N1 and N2 are reactive splitters; (B) H 1 and H 2 are 0 or 180 -degree hybrid transformers. (C) H3 and H 4 are $\mathbf{9 0}$-degree hybrid transformers. R1/R2 are 50 -ohm loads. Resistor power rating depends on input or output power levels.
always required, but often helps maintain stability in more stubborn cases. Since the input impedance of the power transistor is low, the value is not too critical.

component selection

The choice of components is very important. All capacitors should have short low-inductance leads and be able to handle the RF current often present when operating at these impedance and power levels. At VHF and low UHF, mica trimmers such as the Arco/ Elmenco or equivalent are good for tuning elements. The Unelco type of sandwich micas are suggested for the collector RF choke bypass as well as in the fixed value input and output

fig. 7. A typical power bipolar amplifier schematic with recommended starting values. See text for further explanation.

part of fig. 7

value	2 meters	135 cm	70 cm	units
C1	8-60	3-35	3-35	pF
C2	3-35	3-35	2-20	pF
C3	150 (Unelco)	100 (Unelco)	33 (Unelco)	pF
C4	150 (Unelco)	100 (Unelco)	22 (Unelco)	pF
C5	not used	100 (Unelco)	33 (Unelco)	pF
C6	not used	50 (Unelco)	33 Unelco)	pF
C7	8-60	8-60	3-35	pF
C8	3-35	3-35	3-35	pF
L1	2 turns, No. 18, $0.25^{\prime \prime}$ ID, $0.25^{\prime \prime}$ long	2 turns, No. 18, 0.25 " ID, 0.25 " long	$\begin{aligned} & 1.1^{\prime \prime} \times 3 / 16^{\prime \prime} \\ & \text { copper strap } \end{aligned}$	
L2	2 turns, No. 14, 5/16" ID, $0.25^{\prime \prime}$ long	$\begin{aligned} & 1 \text { turn, No. } 16 \text {, } \\ & 0.25^{\prime \prime} \text { iD. } \end{aligned}$	$1.2^{\prime \prime} \times 3 / 16^{\prime \prime}$ copper strap	
L3	0.33 RFC	0.33 RFC	0.1 RFC	microhenry
L4	4 turns, No. 18, $0.25^{\prime \prime}$ ID, $0.5^{\prime \prime}$ long	3 turns, No. 18, $0.25^{\prime \prime} 10,0.38^{\prime \prime}$ long	2 turns, No. 18 , $0.3^{\prime \prime}$ ID, $0.3^{\prime \prime}$ long	

matching networks. These capacitors are easy to find at flea markets and are often available from surplus vendors.

At UHF and above, ATC (American Technical Ceramics) or equivalent porcelain chip capacitors are recommended. They have low loss, low inductance (if properly installed) and can handle high RF current without overheating.
Inductors should be large enough to keep the unloaded Q high. ${ }^{9}$ The wire
should also be large diameter, especially on the collector circuit, where, depending on power level, there can be high RF as well as DC amperes of current flowing.
You're probably wondering why 1 didn't mention microstrip or stripline inductors. These are fine if you're copying a working design, producing many copies of the same amplifier, or are proficient with the use of a Smith chart. However, for the typical one-

fig. 8. A typical construction technique that works well for VHF/UHF bipolar power amplifiers. Biasing and collector supply left off for clarity. Note 1: copper or brass foil soldered to top and bottom of PCB for low impedance ground. Note 2: Some PCB material has been removed to make an island to which components can be soldered.
shot design that is unproven, the discrete inductor is hard to beat. If you err in the value, just add a turn to or drop a turn from the coil and you're back in business. It isn't easy to cut up, extend, or decrease the length of a microstrip line on a printed circuit board if the tuning is incorrect!

In selecting transistors, choose those that will deliver sufficient power at the frequency of interest at the supply voltage available. As stated earlier, the 12 -volt units are usually preferred for availability and price, but 28 -volt units with better linearity would be a better choice, especially if you want to stay friendly with your neighborhood Amateurs. Consult manufacturers' data sheets. Don't be tempted to use a transistor at a lower frequency than recommended - it may selfdestruct!

There are many power transistor manufacturers such as Acrian,

Amperex, Motorola, RCA, Solid State Scientific, and TRW, to name a few. Order from the many suppliers who offer these devices in small quantities, manufacturers generally have a "minimum order" requirement that can make the per-unit price prohibitive. Many companies sell kits of parts, some even with a PC board. These are highly recommended for the Amateur who doesn't have a large junk box!

construction techniques

When building power transistor amplifiers, I prefer to build the circuits directly on or above a double-clad PC board type of material similar to the construction technique mentioned in reference 1 . The choice of PCB material is not important because it's used only for ease of construction and to keep low impedance grounds.

For best performance, especially on UHF, the edges of the PCB should be
wrapped with a thin copper or brass foil which can then be soldered to both the top and bottom of the board. This insures a good low-impedance ground. Next, drill a hole in the PCB sufficiently large to pass the power transistor package. Likewise, place a similar metal foil around this hole and solder it to the top and bottom of the PCB as shown in fig. 8. This will help keep the emitter (or base, if appropriate) at a low impedance to ground. Gain will not be reduced and the circuit will be more stable.

Then attach the PCB material to an adequately sized heat sink with an appropriate number of sheet metal or machine screws. The input/output connectors can be attached by right angle brackets at the ends of the board. Where appropriate, small squares or islands can be cut with a small sharp knife on the PCB as shown in fig. 8. Variable capacitors and other components can be tack soldered between these islands and grounded for mechanical circuit stability.

mismatches

Most modern power transistors are quite rugged, especially if they're emit-ter-ballasted. However, the voltages can soar if the amplifier looks into a high VSWR such as an open circuit. Therefore, always bring drive power up slowly and test for VSWR before running full power. If the VSWR is greater than 2:1, fix the problem before using your amplifier!

filtering

The harmonic content of a transistor power amplifier is usually quite high. This is why it's important to select the proper circuit operating Q and low-loss components as just discussed. Fortunately the amount of harmonic output acceptable (usually 40 dB minimum) is easy to obtain. Also your antenna system will often add some margin. If a transistor power amplifier drives a vacuum tube amplifier, the output harmonics will usually be lower due to the extra filtering usually present in tube amplifiers. However, if harmonics are unacceptable (as evidenced by TVI,
etc.), an output low-pass filter may be required. ${ }^{9}$

heatsinking tips

Several times in this month's column l've stressed heat dissipation as an extremely important parameter when using bipolar power transistors. The thermal resistance or conductivity to the heat sink must be low if long life and reliable operation are to be achieved. All power transistors should be directly attached to a heat sink without an intermediate surface. That is why I recommend the construction techniques above.

Thermal resistance can be kept low by applying a suitable heat sink compound to the transistor base where it mates with the heat sink. Use Dow Corning 340^{\circledR} or an equivalent compound. Mica washers or other objects should be avoided if at all possible.

The size and type of the heat sink is also important. Heat sinks with plenty of radiating fins are highly recommended. It's almost impossible to provide too much heat sink, but remember that the heat must travel away from the device, so the location of the attachment point is most important. Often the sink must be milled slightly to provide room for the nuts on stud packages. Don't remove any more fin area than necessary. (For those interested in choosing the correct heat sink, I strongly recommend that you refer to recent ham radio articles on thermal design. ${ }^{10,11}$)

tuneup and test

At last we get to the bottom line the final tuneup and operation. A recommended test setup is shown in fig. 9.

If the amplifier is operated in linear mode, first set up the Ica or collector operating current, as previously discussed. A 100 or 250 milliampere meter is usually sufficient. Temporarily break the collector line, making sure that the biasing circuitry is ahead of the meter. A variable supply is recommended for this step. Increase the supply voltage slowly while monitoring $I_{c a}$. If the recommended current is obtained

fig. 9. Test setup for tuning up a bipolar power amplifier. Note 1: to biasing circuits. Note 2: to collector circuit.

fig. 10. Typical RF power meter scale. For illustrative purposes, point A is the full power (key down) position. Point B is the maximum point at which the indicator should be when operating SSB for the same power output condition.
before the final operating voltage is reached, decrease the bias circuit current accordingly. Repeat this test and adjustments until the proper current is reached at the nominal operating voltage. If the transistor is stable and the heat sink adequate, the collector current should remain fairly stable.

Next, short out the meter or put a high current type in its place. Apply a small amount of drive and quickly tune the output network for maximum output power. If none is forthcoming, tune the input network until the device starts to run power and adjust the output for maximum. Keep increasing in-
put power while readjusting both the input and output tuning for maximum output power.

When the final desired or expected power is obtained, check the amplifier input VSWR. If it isn't 1.5:1 or better, adjust the input matching network accordingly. If you can measure collector current at maximum output power, calculate the amplifier's efficiency by dividing the indicated output power by the collector power (collector current times collector voltage). It should be at least 35 to 60 percent, depending on frequency and devices. If it is not, readjust the output tuning slightly to increase efficiency.

The final test is to see whether the amplifier output power is fairly linear. This can best be done by noting the amplifier gain (indicated power output divided by input power) at several power levels. At full power, the gain should be only slightly lower, perhaps 0.5 to $1 \mathrm{~dB}(80$ to 90 percent), below that at lower power levels.

power meter syndrome

Let me broach one other subject before closing: I call it the "Power Meter Syndrome." Joe Ham tunes up to full power and sees 100 watts indicated on his wattmeter. Then he switches to SSB and proceeeds to watch the meter jump around. He's tempted to talk the power up to the same maximum tuneup level on the power meter, thinking that doing so will make him easier to copy at the
other end. Doing this causes splatter galore!

Why? Well, most power meters have some meter damping. What this means is that the indicator is slow to respond. Hence, on a voice peak, the meter will typically indicate only 25 to 30 percent of the peak power. I've illustrated this in fig. 10. Also, the maximum output point is probably at compression and therefore the IMD is poor at best. So, if you want to stay friendly with your local competition, keep your level down so that you're running only about 25 to 35 percent of the maximum possible output power as indicated by voice peaks.

conclusion

The intent of this article was to familiarize you with the bipolar power transistor and its use, rather than to provide a cookbook design approach. For some this will be sufficient. For others it will not be enough. However, with the material presented and the
references provided, you should be able to forge ahead in the direction you choose.

Note: In several previous columns I've mentioned a home computer program called "RF-CAD." It's a very useful tool for designing filters and antennas and for matching, etc. This program is now available for use on the IBM PC or compatible machines. For further details and a list of capabilities, write Gary Field, WA1GRC, 5 Pluff Avenue, North Reading, Massachusetts 01864 (enclose SASE).

references

1. Joe Reisert, W1JR, "VHF/UHF World: VHF/UHF Exciters," ham radio, April, 1984, page 84.
2. Joe Reisert, W1JR, "VHF/UHF World: VHF/UHF High Power Amplifiers, Part 1." harn radio, January. 1985, page 97.
3. Joe Reisert, W1JR, "VHF/UHF World: High Power Amplifiers, Part 2," ham radio, February, 1985, page 38.
4. Lee B. Max, "The Byistor, a New Device for Linear Amplifier Bias Networks," CTC Application Note No. 2.08. 10 .
5. Bruce Utter, "Z0 28, A Bias Device for High Power Amplifiers," CTC Application Note No. 2.28.2A.
6. Helge O. Granberg, "A Simplified Approach to VHF Power Amplifier Design," Motorola Application Note No. AN-791, 1979.
7. Frank Davis, "Matching Network Designs with Computer Solutions," Motorola Application Note No. AN-267, March, 1968.
8. B. Becciolini, "Impedance Matching Networks Applied to RF Power Transistors," Motorola Application Note No. AN-721, February, 1974.
9. Joe Reisert, W1JR, "VHF/UHF World: The VHF/ UHF Primer: An Introduction to Filters," ham radio, August, 1984, page 112.
10. Vaughn D. Martin, "Cooling Semiconductors: Part 1 - Designing and Using Heat Sinks," harn radio, July, 1984, page 33.
11. Vaughn D. Martin, "Cooling Semiconductors: Part 2 - Blowers and Fans," ham radio, July, 1984, page 33.

upcoming VHF/UHF events:

August 3-4: ARRL UHF Contest
August 12: Predicted peak of Perseids
August 20:
September 7-8: International Region 1 VHF Contest
September 14-15: ARRL VHF QSO Party
September 16: EME perigee
September 20-22: First annual 1296/2304 MHz
Conference, Estes Park, Colorado (Contact WOPW).
ham radio

How about an attractive BASEBALL style cap that has name and call on it. It gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion. Hats come in the following colors: GOLD BLUE, RED, KELLY GREEN Please send call and name (maximum 6 letters per line)
\square UFBC-81
$\$ 6.00$

No ham should be without an I.D. badge. It's just the thing for club meetings. conventions, and gettogethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, bluel white, white/black, yellow/blue, red/white, green/ white, metalic goid/black, metallic silver/black.
\square UID Engraved ID. Badge
$\$ 2.50$
Please Enclose $\$ 1.00$
to cover shipping and handling
ramio
BOOKSTORE
GREENVILLE, NH 03048

IC－751 9－band Xcvr／，1－30 MHz Rcvr，$\$ 1399.00$ Call IC－745 9－band Xcvr／．1－30 MHz Rcvr．\＄999．00 Call

IC－271h 100w 2 m FM／SSB／CW Xcvt ．．$\$ 899$ Call IC－271A 25 w 2 m FM／SSB／CW Xcvi．$\$ 699.00$ Call \ldots IC－471A 10 w430－450 SSB／CW／FM Xcvr $\$ 799.00$ Call ${ }^{\circ}$

Regular SALE $\$ 1799.00$ Call $\$ 1599.00$ Call

Regular SALE $\$ 1659.00$ Call
FT-980.
FT-ONG,

Call

TS－711A TS－811A
Call

TR－2600A Call TH－21A Call TH－21AT TH－41A TH－41AT Call स्टO

F－726R
\＄ 899.00 Call

亿行 2 园名 AMPLIFIER SALE！
with the purchase of a TR－2600A
FREE PB－21 with the purchase of a TH－21AT IC－04AT Yaesu FT－709R

Call for special price WWWWWW WWMNM？
 OAMATEUR OTWO WAY OMARINE
OCELLULAR MOBILE PHONEOSCANNER ＊Free U．P．S．Cash Order
（Most Item，Most Place）
＊Shoppers，call us last，save $\$ \mathbf{\$}$ ＊SE HABLA ESPANOL

PACKET RADIO THRU SOFTWARE
 AX． 25 Protocol By Bob Richardson，wauch

You can get on Packet Radio two ways．One is with a sophisticated＂black box The other is by making your computer act like a＂black box by pro－ gramming it in a high level mactine language code W4UCH has wnitten a machine language progam tor the Radio Shack TRS 80 Models 1,3 and 4 com puter（Modec 4 works with Model 3 disk whie in Model 3 mode）this book the process of setting your computer to first convert the digital information the process of setting your computer lo irst convert the diplat information 1984 3rd edition
RE－AX Softbound $\$ 21.95$
PROGRAM NOW AVAILABLE IN DISK FORM

RE－MI	Model 1 Disk	
RE－MIII	Model III \＆ 4 Disk	$\$ 29.00$
RE－BD SPECIAL BOOK AND DISK	$\$ 29.00$	

（Specify disc；Mod．I or Mod．III）SAVE \＄2

AMNEC EPU 202 UHF VARACTOR TUNER REC．CHANNELS： $14-83$ ANTENNA INPUT： 75 Ohm
\＄12．95 \＄11．50 EACH EACH $100 \&$ OVER

24 DB GAIN UHF／VHF／FM ANTENNA／LINE AMPLIFIER AUV－724

75 Ohm in and out \＄19．50 EACH $\quad 3 / \$ 17.50 \mathrm{EACH}$

Specialties

P．O．BOX 488 HAWTHORNE，CA 90250
TELEPHONE（213）324－1973 WE ACCEPT MONE Y ORDER，VISA，MASTERCIRD PERSONAL CHECK ORDERS HELD 20 DAYS．NO COD PERSONAL CHECK ORDERS HELD 10 DA YS NO COD

CD ICOM
IC 745 HF XCVR/Gen Cov. 75995 IC 751 HF XCVR/Gen Cov $\quad 1779.00$ IC 271 A 2 m XCVR . Special 559.95 IC $32002 \mathrm{~m} / 440$ bands ... 489.95 IC 271H 100 -watt 2 m XCVR 732.95 IC 02 AI 2 mHT . 10 Memories CALL IC 04AT 440 HT /Touchtone 29995 M12 12-ch Marine HT. 219.95 M80 25 -watt Marine Scan. 387.26 M5 all-Channel Marine HT . 325.95

KENWOOD

TS.940S HF Transceive TS 430 SHF Transceiver SPECIAL TR-7950 2m mobile, 45W TA. 91302 m All-mode 25 W CAlL TR-2600A 2 m FM scan HT . CALL

YAESU

FRG 9600 Scanner Intro 549.95 FT 757 HF XCVR with mic 699.95 FT 480 CAT System $\quad 143900$ FAG 8800 SWL Receiver $\quad 51995$ FAG 8800 SWL Receiver $\quad 519.95$ FT 209RH 2m HT Special 299.95 FT 2700RH 25 W , dual-band 499.95

SANTEC

ST 142 Handheid 24995

 KDK FM 2033 2m 25-watt. 259.95

TEN-TEC
25912 m Synth Handheid 259.95 Century 22 CW XCVR 350.00 2510 Model B

41095
CORSAIR Model 560 999.95
ARGOSY II 5250 Digital ... 519.95
ARITON 425 HF Amp 1.5 kW . CALL

Want li? We've Got It!

SCANNERS

REGENCY

M $\times 400030-900 \mathrm{MHz}$
MX4000 $30-900 \mathrm{MHz} \quad 389.00$ New R1060 10-ch. 6-band 99.95 $\begin{array}{lr}\text { H } \times 2000 \mathrm{HT} 120-900 \mathrm{MHz} \quad 349.00 \\ \text { M× } 200030 . c h & 210.95\end{array}$ M×3000 30 -ch. 6 -band
bearcat
New 100×L Handheld 201 16-channel/aircraft 202040 -ch/alrcraft 210XL -. 195.00

AMPLIFIERS

TOKYO HY.POWER

VHF \& UHF amps CALL for Quotes DAIWA
LA-2035 2m Amp 2-30W 68.95 LA-2035R 2 m Amp/preAmp .74 .95 MIRAGE
B1016 2m Amplifier 10-160 242.95 B215 2m Amp: 2-150 245.95 AMERITRON HF AMPS AL80 1200 watt $\quad . \quad 589.95$ AL 12001.5 kW Amp .. 1399.95 KENWOOD TL. 9222 kW . CALL AMP SUPPLY
AT 1200A 1200 PEP Tuner 169.95 LK 500ZA 2.5 kW hipersil . . 999.00 VOCOM AMPLIFIERS 2 watts- 60 watts 2 m Amp . . 107.95 2 watts- 120 watts 2 m Amp. 16995 TE Systems GaAs FET . Call

ASTRON Power Supply
$\begin{array}{llll}\text { RS7A } & .49 .95 & \text { VS20M } & 124.95 \\ \text { RS50A } & 189.95 & \text { RS50M } & 209\end{array}$

at a Discount

Compare Our Sample Prices Then Call Toll Free for Orders \& Quotes 800-336-4799 (800-572-4201 in VA)

Hard to get through on the 800 number?

 C.lll betore 10 am or atter $5 \rho \mathrm{~m}$ or c all one or our regular numbers. "you pay tor the calant order, we tl credt your order with $\$ 1$.

ege, me

13646 Jefferson Davis Highway Woodbridge. Virginia 22191 Intormation \& Service: (703) 643-1063 Store Hours: MIT $10 \mathrm{a}-6 \mathrm{p}$

INTERFACES

HAL

CWR 6850 Telereader ... 746.95 CRI 200 RTTY/CW Interface 259.95 PACKET
AEA PKT 1 Packet Controller 459.95 Kanıronics Packet Controller 33995

HARDWARE

MFJ 1224 with MFJ Software 79.95 Kantronics Intertace II 210.95 AEA CP-100 intertace 284.95 AEA CP-1 Interface179.95 PACKAGES
Microlog AIR-1 Vic-20/C-64 179.95 AEA Microamtor Patch. 119.95

SOFTWARE

Kantronics Hamtext Vic-20. C-64. Apple CALL Kantronics Hamsoft/Amtor Vic-20, C-64, TRS-80. Atari 69.95 MicrologAifDisk V20/C64 39.95 AEA Marstext Vic-20 or C-6479.95 Dr. DX by AEA Dr. QSO by AEA

ACCESSORIES

BENCHER PADDLES
Black/Chfome38 95/48.95 AEA KEYERS
CK-2 Contest Keyer 146.95 MM-2 Mor sematic Keyer 172.95 TELEX HEADSETS Call MFJ PRODUCTS ...Call B \& W PRODUCTSCall AMPHENOL Connectors CALL

WF $10 a-8 p$ Sat $10 a-4 p$ Order Hours: M-F $9 a \rightarrow 70$. Sat $10 a-4 p$ Send 322° stamps for a flyer Dealer inquiries Invited

Terms: No personal checks accepted. Prices do not include shipping UPS COD tee $\$ 235$ per package. Prices are subject to change with out notice or obligation. Products are not sold lor evaluation. Authorized relurns are subject to a 15% restocking and handling fee and credit
will be issued to use on your next purchase.

KT34A 4-ele 10-15-20m
334.95 2 m -11X 11 -element $2 \mathrm{~m} . \quad 5995$ MOSLEY
CL-33 3-ele Triband Beam. 265.95 Pro 37 7-ele $10 \cdot 15-20 \mathrm{~m}$. 465.95 HUSTLER
6-BTV $10-80 \mathrm{~m}$ Vert/30m $\quad 128.95$ MOBILE RESONATOAS Reg Super 10 and 15 meter . $11.95 \quad 17.95$ 30 and 40 meters $1795 \quad 2595$
HY-GAIN 391S TH7OX $10.15-20 \mathrm{~m}$. 445.00 395S Explorer 14 Triband 305.00 MORE ANTENNAS AEA Isopoles AVANTIHM 151.3 G 2 m LARSEN LM-150 $5 / 8 \mathrm{Mag}$ MINIOUAD HOBUTTERNUT HF6V Vert

141.95
109.95

TOWERS

UNARCO-ROHN

Self-supporting towers HBX40 40-feet with Base 198.00 HBX48 48 -feet with Base 264.00
Guyed foldover towers: FK2558 58 -feet, 25G... 94000 FK4554 54-feet. 45G... 129600
Stralght Sections: Stralght Sections: 20G Straight Section 25G Straight Section Tower Packages TRI-EX \& HY-GAIN Cable by Saxton Cablewave Hardline . Call

ROTATORS

Alliance HD73

98.95

Kenpro KR500 Elevation	159.95
Hy-Gain Ham IV	229.95

Hy-Gain Tailtwister TX $\quad 269.95$ Hy-Gain Heavy-duty $300 \ldots 530.00$
37.95
48.95

CB-10 FM SPECIAL

- Hy Gain 40-Channel Board
- 40-Channel Switch
- Volume \& Squelch Control
- FM Detector Module
- Full Instructions Included
*14.95
Add $\$ 2.00$
shipping \& handling

BOARD ONLY
$\$ 6.95$

QRP TRANSGEIVER SET - $\$ 34.95$

VHF CONVERTER SET - \$24.95
Add $\$ 2.00$ For Shipping \& Handling - Send For FREE Brochure
SEND $\$ 2.00$ FOR FULL MANUAL WITH CIRCUIT DIAGRAMS
MANY OTHER MODULES AVAILABLE
MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA. 33011

HOBBY KITS ${ }^{\text {® }}$

EXPERIMENT - LEARN ELECTRONICS BUILD AND DESIGN YOUR OWN AM,FM, CW, OR SSB RECEIVERS, TRANSMITTERS AND ETC WITH OUR MINI-LINEAR CIRCUIT KITS All kits Come Complete With Etched and Drilled Circuit Boards and All Parts Needed To Function As Described
AFA-1 AUDIO AMP. LM. 3801.2 watts 4.16 OHM Outpul $\$ 4.95$
AFP-1 AUDIO PREAMP. Dual Audio freamb - formine Eic $\$ 3.95$
BMD-1 BAL. MIX. LM 1496 Mxer - 5 B Modulator Tuneo Oulpul $\$ 9.95$
DET-1 AM DET. Am Envelope Detectio with AGC Ouput $\$ 3.95$
DET-2 FM DET. LM 3065 FM Detector (455 KHz or 4 - 1 l Mr-z) $\$ 7.95$
DET-3 SSB DET. LM 1496 SSB Detector (Needs OSC-1 or OSC.4) \$9.95
DET-4 DETECTOR CW/SSB using a dual gate FEE transistor \$4.95
IFA-1 IF AMP. CA 302830 DB Gali. Optona AGC (455 KHZ CH 9.11 MHz) $\$ 6.95$
FLS-9 SSB FILTER 9 MHzz 2 kHz BWwin USG XAL lor OSC. $1 \quad \$ 49.95$
IFA-2 IF AMP. CA 302830 CB Gan 1.100 MHz Ootunal Acic ... $\$ 6.95$
MBA-1 FREQ. MULT. ruted Outpul Buter-Mul: Anpititer to 250 MHz . $\$ 5.95$
OSC-1 CRYSTAL OSC. $100 \mathrm{kHz}-20 \mathrm{MHZ}$ No: Tuneo $\$ 3.95$
OSC-2 CRYSTAL OSC. Or 18.200 MHz Tuned Oliput . $\$ 4.95$
PSV-1 POWER SUPPLY LM 723 W.n Pass Transistor 3 amps max. $\$ 7.95$
PLL-2 TONE DETECTOR Lms67PLL Tone Detector \$5.95
RF/MIX-1 RF-AMP/MIXER CA 3028 - Tuned RF AMP/Mxer I-100 MHz $\$ 7.95$
RF/MIX-2 RF-AMP/MIXER 3 n204 TUned RF AM/Mxer I - 250 MHz $\$ 7.95$
VCO. 3 VARIABLE HI STAB. OSC. Varactor tuned. 400 to 600 khz output $\$ 7.95$
VCO-4 VARIABLE HI STAB OSC. Varactor tuned 31020 Miz output $\$ 7.95$
Add $\$ 2.00$ For Shipping \& Handling - Send For FREE Brochure SEND $\$ 200$ FOR FULL MANUAL WITH CIRCUIT DIAGRAMS AND TYPICAL RECEIVER ANO TRANSMITTER HOOK-UPS MANY OTHER MODULES AVAILABLE
MORNING DISTRIBUTING CO.

- A patch should work with any radio. AM, FM, ACSB, relay switched or synthesized.
- Patch performance should not be dependent on the T/R speed of your radio.
- Your patch should sound just like your home phone.
- There should not be any sampling noises to distract you and rob important syllables. The best phone patches do not use the cheap sampling method. (Did you know that the competition uses VOX rather than sampling in their $\$ 1000$ commercial model?)
- A patch should disconnect automatically if the number dialed is busy.
- A patch should be flexible. You should be able to use it simplex, repeater aided simplex, or semi-duplex.
- A patch should allow you to manually connect any mobile or HT on your local repeater to the phone system for a fully automatic conversation. Someone may need to report an emergency!
- A patch should not become erratic when the mobile is noisy.
- You should be able to use a power amplifier on your base to extend range.
- You should be able to connect a patch to the MIC and EXT. speaker jack of your radio for a quick and effortless interface.
- You should be able to connect a patch to three points inside your radio (VOL high side, PTT, MIC) so that the patch does not interfere with the use of the radio and the VOL. and SQ. settings do not affect the patch.
- A patch should have MOV lightning protectors.
- Your patch should be made in the USA where consultation and factory service are immediately available.

ONLY
 PRIVATE PATCH III GIVES YOU ALL OF THE ABOVE BEWARE OF INFERIOR IMITATIONS

With an amazingly low price, the all new PRIVATE PATCH III is the most powerful personal phone patch system available. You can use it simplex, repeater aided simplex (from your base) or semi-duplex (at the repeater). That's right, you will never have to buy another patch. PRIVATE PATCH III does it all! There are many new and important features which were formerly only available in our top commercial models.
With a flick of the new connect switch you can patch your friends on the repeater into the phone system. One of them may need to report an emergency!
No hassles with busy signals! If you call a number that is busy, just put your MIC down and relax. PRIVATE PATCH III will disconnect automatically.
The new CW ID keeps you completely informed as to patch status. ID occurs when you access and again when you disconnect. ID is also sent after toll call attempts, all automatic disconnects, manual disconnect and when timeout is imminent. And of course your CW ID chip is free.
PRIVATE PATCH III does not interfere with the normal use of your base radio. A new audio pre-amp permits audio take off before the VOL. control. As a result, the VOL. and squelch settings do not affect patch operation. Of course you can also connect PRIVATE PATCH III to the MIC and EXT speaker jacks as before.
A new digit counting system makes the toll restrict positive even in areas where you do not have to dial "l" first. A secret five digit code disables the toll restrict for one toll call. Re-arm is automatic.
Additional new features: MOV lightning protection - Three digit access code (eg.*93) - Spare relay position on board - Plus former features: $3 / 6$ minute timeout timer Digital fast VOX (pat. pend.) - 115 VAC supply - Modular Jack and cord plus much more!
Please write or call for our four page brochure to get the complete story.

Options:
FCC approved coupler
12 VDC or 230 VAC power

Warranty? Yes, one full year!

DEALERS

AMATEUR ELECTRONIC SUPPLY JUNS ELECTRONICS Milwaukee WI, Wickliffe Oh, Orlando FL, Clearwater FL. Las Vegas NV
COLES COMMUNICATIONS
San Antonio TX
ERICKSON COMMUNICATIONS Chicago IL

ham Radio outlet

Anaheim CA, Burlingame CA.
Oakland CA, Phoenix AZ,
San Diego CA, Van Nuys CA
HENRY RADIO
Los Angeles CA, Anaheim CA. Butier MO

Culver City CA, Reno NV MIAMI RADIO CENTER CORP. Miami FL
MIKES ELECTRONICS Ft. Lauderdale, Miami FL N\&G DISTRIBUTING CORP. Miami FL
PACE ENGINEERING Tucson AZ
THE HAM STATION Evansville in
CANADA:
DOLLARD ELECTRONICS
Vancouver, BC

CONNECT
SYSTEMS
INCORPORATED 23731 Madison St., Torrance, CA 90505

Individual cathode bias does the trick

stop blowing finals in the GLA-1000 amplifier

The Dentron GLA-1000 linear amplifier, introduced in 1978, has since become popular with HF operators on both sides of the Atlantic. Measuring only $11 \times$ $5-3 / 4 \times 11$ inches ($27 \times 13.7 \times 27 \mathrm{~cm}$), this compact amplifier runs up to 1200 watts PEP input when driven by any of the popular 100 -watt SSB transceivers. The amplifier uses four tubes in parallel operated in grounded grid configuration with 1200 volts on the anodes.

Though the tubes are capable of supplying the rated output with ease, problems were encountered often in daily use. The techniques used for solving the problem are applicable to all amplifiers with similar bias arrangements.

tubes destroyed with high SWR

My GLA-1000 linear amplifier operated well for the first three months until operation was attempted on 15 meters into a $3: 1$ SWR. The AC fuse blew and examination revealed that all the tubes were ruined. A replacement matched set of tubes was acquired from Dentron and installed, but suffered a similar fate when an accidental mismatch occurred.

In despair, I contacted Dentron for advice. They rec-
ommended updating the GLA-1000 into the latest GLA-1000B using a tuned circuit kit, a new grid bias zener diode, and add-on resistors for the anode parasitic chokes.
The original amplifier section of the unit is shown in skeleton form in fig. 1, which clearly depicts the bias arrangement.

tuned input kit

The modification kit replaces the fixed filter at the input with a PC board containing five pretuned pi circuits. These reduce the input SWR and improve the power transfer from the transceiver while filtering unwanted harmonics.
The zener diode in the modification kit is a 24 -volt 1 N3321 that replaces the original 9.1 volt 1 N 3308 . This increases the negative grid bias, which reduces the nosignal anode current to 150 mA and reduces both the overall dissipation and the peak currents under drive conditions.

By A. J. Nailer, G4CFY, 12 Weatherbury Way, Dorchester, Dorset, England DT1 2EF, and G. J. Morgan, G3ROG, 1 Saint John's Mead, Saint John's Street, Winchester, Hampshire, England

fig. 1. Simplified GLA-1000 original circuit.

BZY93 24 volt, 20 watt zener,
Radio Shack No. 283-362
fig. 2. Dentron modification.

The four 100-ohm resistors added to the anode parasitic chokes are included to reduce their Q, which may prevent possible VHF instability.

A simplified diagram of the modified circuit is shown in fig. 2.

After modification, the third set of PA tubes lasted twelve months until an open circuit antenna feeder caused their demise together with the new zener diode. The circuit arrangement is far too critical of any mismatch, and instead of providing a fail-safe condition, it always destroys the costliest circuit components.

reason for sensitivity

Examination of the modified circuit reveais that the pi input circuit would not help power sharing between the tubes but would make the input look close to 50 ohms on all bands. While this is obviously an advan-
tage to owners of all solid-state transceivers, it is of little help to operators of transceivers with tube power amplifier PAs that include their own pi output networks.

The zener diode replacement, obviously intended to control performance, does not accommodate unmatched sets of tubes. This is especially true if one tube is very different from the others. Under such circumstances the bad tube either shuts down by going gassy or shorts. In the shut-down case the remaining tubes would overdissipate and successively fail, just like dominos falling down. This is what appears to have happened the first two times. The third catastrophe would indicate a short circuit tube that blew the zener and left the remaining tube with no negative grid bias.

The bias is developed by drawing the cathode current of all four tubes from the single zener diode. This places the cathodes positive with respect to the grounded grids by the value of the zener voltage.

With the replacement of the Motorola zener diode likely to be expensive, drastic modifications to provide a separate bias supply were considered.
To control tube conditions both dynamically and quiescently, bias has to be supplied to each tube's cathode. This, together with the zener bias, would ensure equal power sharing. The idea was taken from the common practice used with parallel transistor stages, in which balancing resistors are used in the base or emitter circuit to overcome differences in base/emitter voltages and to ensure equal power sharing. Figures 3 and 4 show typical transistor powersharing circuits.
Automatic bias is provided simply by adding a resistor in the cathode so that cathode current produces grid bias. The value of resistor has to be chosen with
care so that it does not drop too many volts on current peaks and cause flat topping. Nevertheless, it has to be large enough to cause about 1 volt change of bias for a 50 percent change of cathode current. With a combined current of 150 mA , each tube should be drawing 37.5 mA , about right for most class AB1 tube finals. A 50 percent change would be 18.75 mA , so for 1 volt the automatic bias resistor R_{X} would be

$$
R_{X}=\frac{1 V}{18.75 \mathrm{~mA}}=53.33 \mathrm{ohms},
$$

(a 56 ohm resistor was chosen).
However, since the signal is also applied to the cathodes in this configuration, the 56 -ohm resistors in series would cause appreciable loss of drive and also mismatch the newly installed pi input circuit. To over-

fig. 3. Bias and drive balancing.

fig. 4. Bias and load sharing.

fig. 5. Bias and load sharing modification.

A monthly of 100 -plus pages-has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV "you will receive a FREE LCD Calendar/Clock.

- Only \$19.95 per year (12 monthly issues)
- \$1.00 for sample copy

The best in satellite programming! Featuring: \star All Scheduled Channels \star Weekly Updated Listings *Magazine Format \star Complete Movie Listing \star All Sports Specials \star Prime Time Highlights \star Specials Listing and \star Programming Updates!

- Only $\$ 39.00$ per year (52 weekly issues)
- 2 Years $\$ 69.00$ (104 weekly issues)
- \$1.00 for sample copy

Visa ${ }^{\text {® }}$ and MasterCard ${ }^{\text {® }}$ accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

$$
\text { STV }^{\otimes} / \text { OnSat }{ }^{\otimes}
$$

P.O. Box 2384-Dept. HR • Shelby, NC 28151-2384

SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020
come this, each resistor could be bypassed to RF by a low reactance capacitor. A value was chosen by trying standard values in the formula $X_{c}=\frac{1}{2 \pi f C}$ where it was found that $0.01 \mu \mathrm{~F}$ was 4.55 ohms at 3.5 MHz and 0.57 ohm at 28 MHz .

The new circuit configuration is shown in fig. 5.

construction details

The tube sockets in the GLA-1000 are mounted on a PC board. A scale drawing of this is shown in fig. 6. The $0.01 \mu \mathrm{~F}$ bypass capacitors, C_{X}, are attached to the resistors as shown and wired across the breaks marked on the tracks connecting pins 3 of the tubes.

A suitable alternative to the 1 N 3321 zener is the BZY93 24-volt type. Available at low cost, it has a stud anode instead of cathode. It can be fitted into the hole used by the old diode but must use an insulating kit and solder tag to pick up the positive stud. Use a grounding strap on its wire end.

performance

It was well over a year since the modification was done. Since that time, the unit has undergone intense activity and repetitive abuse. The absence of TVI complaints suggests that the modification has not degraded signal purity in any way. The peak output power is easily achieved and appears stable under continued full power operation.

The current sharing technique prevents the "domino effect" breakdown under fault conditions. This was convincingly demonstrated when a severe mismatch caused the AC fuse to blow - but nothing else was damaged!

The amplifier was designed to use selected and matched tubes designated D50 by Dentron. Nevertheless the third and fourth sets were standard type 6LO6 manufactured in the USA. Tube types 6LQ6, 6JE6, or 6MJ6 may be used, although idling currents may differ sufficiently to require adjustment of the bias zener voltage to give between 35 and 40 mA quiescent current. The 6LQ6 tube and the 6MJ6 type, which are capable of higher power at lower frequencies but unsuitable for 10 -meter use, are both readily available. Although Japanese tube substitutions were found to be unstable in this design, both before and after modification, they appear to provide higher gain. The American types are the lowest cost and have shown no signs of instability. (Higher power types 6MJ6 have not been tried at any time.)

This modification has been so successful that l've shelved my half-built homebrew 813 linear. Undoubtedly the principles involved can be extended to other linears of similar design and should result in greatly extended tube life.
ham radio

Now you can communicate vital information even when the station you are calling is not on the air - with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you - any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your callsign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.
Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging. price.

MICRO CONTROL SPECIALTIES

- Create messages just by talking. Message Master's 'real-voice' technique saves YOUR VOICE in digital memory to deliver messages in your own volce, language and dialect.
- Mallbox-style operation gives individual message dellvery service to $\mathbf{1 0 0}$ system users.
- Easily added to any repeater or base station for remote operation with only four connections.
- Special features include callisign identifications, tail messages, and bulletin messages.
- Digital message storage provides instant playback of stored messages.
- Modular memory meets your exact needs from 2 to 8 minutes of total message storage.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.

DALBANI CORPORATION

PARTS COMPONENTS SYSTEMS

Dalbani Corporation offers the finest

 in audio, video, computer and home electronics, for the professional retailer or home specialist.To obtain a copy of our 88 page full-line 1985 catalog please call: 1-800-DALBANI

ALINCO CORPORATION

P.O. Box 70007 - Reno, Nev. 89570 44 Glen Carran Circle - Sparks, Nev. 89431 Phone (702) 359-1414 • Telex 4993999 EGELECTR International Division of ALINCO Group

"WATCH ALINCO CROW" MORE EXCITING EQUPPMENT AND ACCESSORIIES ON THE WAY

International Crystal Manufacturing Co., Inc.
10 North Lee, PO Box 26330. Okiahoma City. OK 73126-0330 (405) 236.3741

This publication is available in microform from University

Please send information about these titles:

Name

Company/lnstitution

Address
City
State \qquad
Phone 1
Call toll-free 800-521-3044 In Michugan. Alaska and Hawai call collect 313-761-4700. Or mail inquiry to University Microfilms International 300 North Zeeb Road. Ann Arbor. M1 48106.

a pulsed, constant current, NiCad battery charger

Longer life, shorter charge time - plus automatic shutoff

"Zapping" NiCad batteries with a burst of high current is an old trick often used to revive seemingly dead cells. Word has it that some RC model airplane enthusiasts extended this idea to the actual charging of batteries, with favorable results; their batteries lasted twice as long and charged more quickly than those who used conventional charging methods. The idea was to charge with a train of pulses instead of a steady current. Apparently, less energy was lost to heat during the charging process, resulting in shorter charging times and increased battery life.

This charger was designed with these goals in mind. Over the two years it's been in use, charging times have been shortened by one-third and new life has been given to a battery pack about to be thrown away.

principle of operation

The key to pulse charging is to keep the average value of the charging current the same as it would be in conventional schemes, but use a low duty cycle waveform. The plot shown in fig. 1 is the current waveform used in this charger. For 10 percent of each cycle, current equal to $I_{M A X}$ charges the battery. For the remaining 90 percent of the cycle, no current flows. This produces a rectangular waveform with a 10 percent duty cycle.

The DC, or average value of this waveform is 10 percent of the pulse amplitude, or

$$
\begin{equation*}
I_{D C}=0 . I_{M A X} \tag{1}
\end{equation*}
$$

As long as normal charging precautions are observed and the DC charge rate is within the capability of the battery, pulse charging will in no way harm the
battery. A pulse width of about 100 microseconds ($\mu \mathrm{s}$) is appropriate for this application, which, because of the 10 percent duty cycle, yields a pulse rate of 1 kHz .

circuit description

The block diagram in fig. 2 outlines the basic design of the charger. The schematic is shown in fig. 3. The charger - designed to handle from one to ten NiCad cells, with an adjustable charge rate of 50 to 450 mA - consists of the following sections:

Constant-current source. The charging current is supplied by a constant-current source that can be pulsed at peak currents of up to 5.0 amperes. A constant-current source can be made from a threeterminal voltage regulator and a resistor, as shown in fig. 4. In this circuit the current, $I_{D C}$, is simply the output voltage of the regulator, V_{0}, divided by R3, or

$$
\begin{equation*}
I_{C}=\frac{V_{o}}{\bar{R} \mathbf{3}} \tag{2}
\end{equation*}
$$

Unfortunately, this method does not easily lend itself to high frequency switching.

A better approach is shown in fig. 5A, in which the regulator is replaced with a zener diode and pass transistor. Here, the current is equal to the zener voltage, V_{Z} (less the base-emitter voltage drop of Q1) divided by R3, or

$$
\begin{equation*}
I_{C}=\frac{\left(V_{Z}-0.6\right)}{R 3} \tag{3}
\end{equation*}
$$

The current can be instantly switched off by grounding the base of Q1. This circuit worked well except at high currents.

To improve its operation at high currents, I added a second transistor as shown in fig. 5B. ${ }^{1}$ This circuit worked very well. It could supply a constant current into either a short circuit or 10 cells in series and still hold the current to within 1 percent of its setting.

As shown in fig. 3, the current is adjusted by R3. R4 is inserted in series with R3 to limit the current if R3 is set to zero.

By Alan Lefkow, K2MWU, 17 Jacobs Road, Thiells, New York 10984

fig. 1. The charging current has a rectangular waveform with a 10 percent duty cycle. Repetition rate is approximately $1 \mathbf{k H z}$.

fig. 2. Block diagram of the pulse charger.

Power supply. For the constant current circuit to work properly while charging up to 10 cells in series, the power supply must provide at least 30 VDC . The unregulated power supply shown in fig. 3 satisfies that requirement if T1's taps are wired for 22.3 VAC , as shown. A separate zener regulated section provides 15 VDC for the control circuitry of the charger.
Pulse generator. The pulse waveform is generated by U1. Actually, U1 produces a 90 percent duty cycle waveform instead of 10 percent in order to accommodate the inverting action of Q3. Q3 turns the current source off when the output of U 1 is high, and on when it is low. That converts U1's 90 percent duty cycle to a 10 percent duty cycle charging current.
Automatic shutoff. Different schemes abound for controlling the charging time, each with their advantages and disadvantages. In the scheme chosen for this charger, charging stops when the battery
reaches a set voltage. However, the battery voltage is not monitored in an ordinary manner.

Because of a battery's internal resistance, the voltage at its terminals during charging is less than its open circuit voltage, and will vary with the charge rate. As soon as a load is put across the battery, the voltage will drop further. In this charger, battery voltage is monitored only during that part of each cycle in which the charge current is off. Furthermore, a small load, R5, is kept across the battery to give a truer indication of the state of charge when the battery is monitored. The load is automatically switched out of the circuit during automatic shutdown.

Automatic shutoff is accomplished by monitoring the battery voltage with comparator U3. R15 and R16 divide down that voltage and U3 compares it with the voltage provided by reference diode CR8. When the voltage at the comparator rises above the reference voltage, O5 turns on, shorts out C5, and stops U1 from oscillating. That forces the output of U1 high, which holds the constant-current source off.

R13 and R17 add hysteresis to the action of the comparator. With the values given, the battery voltage must drop about 30 percent before charging will switch on again after automatic shutoff. The amount of hysteresis can be changed by raising or lowering the value of R17.

In order for U3 to monitor the battery voltage only during the off portion of a charge cycle, CMOS switch U2 passes the voltage on to the comparator in sync with U1. In this way, when U1 stops oscillating, the comparator will still see the battery's voltage because U 2 is kept closed by U 1 in the automatic shutoff state.
Current metering. The torque on the pointer in a standard D'Arsonval meter movement is directly proportional to the true DC value of any current passing through it. As a result, the DC milliamp meter M1 in fig. 3 correctly indicates the true charge rate delivered to the battery. Load resistor R5 is wired in the circuit so that the load current delivered to R5 by the battery during the off period of a cycle is taken into consideration by M1. The value of R5 was chosen to add a load of about 25 mA when charging an 11-volt battery pack.

construction

Perfboard was used for mounting most of the components. The board was connected to the rest of the circuit by an edge connector to make it removable during the design phase of the project, but any convenient construction method can be used because parts layout is not critical. A Radio Shack cabinet (former catalog No. 270-269, fig. 6) housed the circuit. M1 is specified as $0-500 \mathrm{~mA}$, in the parts list; a $0-100 \mu \mathrm{~A}$ movement was used in the original model by adding a current shunt.

fig. 3. Schematic of pulse charger. U2-U4 can be eliminated if the automatic shutoff feature is not wanted.

Although pass transistor $\mathbf{Q 1}$ is heat-sinked to the case, it must be electrically insulated from it. During conduction, the current through $\mathbf{Q 1}$ can be as high as 5 amperes and the voltage across it about 15 volts. Instantaneous power is $5 \times 15=75$ watts, but the power which must be dissipated by $\mathrm{Q1}$ is only ten percent of that because of the duty cycle. Using the case as a heat sink works well for this low power level.

The heat dissipated in R3 and R4 is proportional to the square of the RMS voltage across them, divided by their resistance. Because of the ten percent duty cycle, that RMS voltage is approximately one-third of the peak voltage across the resistors, as is the RMS current value through the resistors. With this in mind, the wattage ratings should be 10 watts for R4 and 5 watts for R3. An old loudspeaker level control was
used for R3, but any $70-100$ ohm, 5 -watt potentiometer will do. Since the charge current is inversely proportional to R3, the higher current settings will bunch up at one end of the shaft rotation. A potentiometer with a non-linear taper can reduce that effect.

Switch S2 disables the automatic shutoff feature. If desired, the entire shutoff feature can be left out by removing U2 through U4 and their related components, as well as R5 and Q4.

operating the charger

NiCad batteries can be charged at a significantly higher rate than that provided by the average stock charger as long as the battery is not overcharged. ${ }^{2}$ Once fully charged, the battery must dissipate any additional charging as heat. At the popular $\mathrm{C} / 10$

Parts list figure 3.	
C1	$1500 \mu \mathrm{~F}, 50$ volt electrolytic
C2	$0.001 \mu F$
C3	$100{ }_{1} \mathrm{~F} .25$ volt electrolytic
C4, 66	$0.01 \mu F$
C5	$0.01 \mu \mathrm{~F}$ mylar, 10 percent
C7	$10{ }_{\mu} F$ tantalum
CR1, CR2	
CR3, CR4	6 ampere, 100 volt rectifier bridge
CR5	1N753 6.2 volt zener diode
CR6	2 ampere, 50 voll rectifier diode
CR7	1 N4744, 15 volt zener diode
CR8	1.2 reference diode
M1	$0-500 \mathrm{~mA} \mathrm{DC} \mathrm{ammeter}$
Q1	TIP120 (Radio Shack No. 276-2068)
Q2	TIS97
Q3	2N3904
Q4	2N2222
Q5	2N3704
R1	2.2 kilohms, 1 watt
R2	2.2 kilohms, 2 watts
R3	70-100 ohms, 5 watt potentiometer (see text)
R4	1.5 ohms, 10 watts
R5	470 ohms, 2 watts
R6	1.5 kilohms
R7	680 ohm. 2 watts
R8,R11	10 kilohms
R9	120 kilohms
R10,R18	22 kilohms
R12	3.3 kilohms
R13	2.2 megohms
R14	15 kilohms
R15	5.6 kilohms
R16	2 kilohms, 10-turn trim potentiometer
R17	51 kilohms
S1,52	SPST toggle switch
T1	Stancor RT-201 power transformer or equivalent
U1	NE555 timer
U2	CO4016 CMOS switch
U3	LM339 comparator
U4	National CMOS 74C04

charge rate, where C is the ampere-hour capacity of the battery, NiCad cells can be overcharged continuously without risk of damage from overheating. This assures safety in case the battery is left on "charge" continuously. On the other hand, if the battery is charged at a higher charge rate, say $\mathrm{C} / 3$, and goes into overcharge, cell temperature will rise, with possible damage and loss of battery life. However, if care is taken to avoid overcharging, there is no inherent reason why a NiCad cell cannot be charged at the higher rate. The automatic shutoff will prevent just such overcharging from occurring after it is properly set.

To set the automatic shutoff, first remove any diode in series with the HT's charging jack if the battery will remain inside the HT during charging. (If you don't do this, the automatic shutoff feature won't work.) Connect the discharged battery to the charger, turn the charger on, and turn off the automatic shutoff with S2. Set the charge rate to C/3, and add another 5 mA to compensate for changes in the load of R5 as the battery voltage rises. (For a 500 mA hour battery, that would be about 155 mA .) Monitor the battery voltage with a precision voltmeter, preferably a DVM accuracy is not as important as precision. Check the

fig. 4. A 3-terminal regulator forms a constant current source by holding the voltage across and, hence, the current through R3 constant.

fig. 5. A constant current source can be created with a zener diode, one or two transistors, and a couple of resistors. The current can easily be switched off to form pulses by grounding the base of $\mathbf{Q 1}$ through another transistor.
battery frequently as it charges. The battery voltage will rise rapidly initially and gradually thereafter. When the battery nears its fully charged state the voltage will again rise, but more importantly, the battery will start to become warm to the touch. This increase in temperature indicates that the battery is now fully charged. Note the voltage when this occurs; it will probably be the equivalent of $1.45-1.50$ volts per cell. Also make a note of how much charging time it took to arrive at this point, starting with a fully discharged battery.

Now turn on the automatic feature, and adjust R16 until the charge current turns off. Reduce the charge rate setting slightly and reset the automatic shutoff by cycling S2 on and off. Raise the charge current back up again and watch the voltmeter to make sure charging shuts off at the voltage just measured. If the shutoff point cannot be set exactly, err on the low side by setting it slightly below the desired voltage.

If the automatic feature is not used, charging can

fig. 6. The charger fits nicely in a standard Radio Shack cabinet. Parts layout is not critical and any convenient construction method can be used.
be controlled by time. An inexpensive mechanical timer can shut off the charger after the proper length of time, as just determined. Remove the "ON" arm of the timer to keep it from again turning on the charger 24 hours later.

conclusion

The pulse charger has been a considerable timesaver: it takes only 3-1/2 hours to fully charge a $500-$
mA hour battery pack at a 150 mA charge rate; a nonpulsed charger at that same rate took 4-1/2 hours. This represents a time savings of over 30 percent, and increased charging efficiency as well. As a test, the battery was discharged with a load resistor equivalent to a 100 mA load and timed to confirm that it was indeed fully charged by the pulse charger.

The charger was also used to add life to an old, seemingly dead battery pack. The battery was consecutively discharged and charged about four times. From that point on, it lasted another three months.

The pulsed charger should prove to be a worthwhile accessory for anyone who uses NiCad batteries extensively.

acknowledgement

Many thanks to Pat Spadafore, KA2MOV, for his invaluable experience and recommendations concerning pulsed charging techniques.

references

1. The Radio Amateur's Handbook, American Radio Relay League, Newington, Connecticut, 1983, page 4-31.
2. Nickel-Cadmium Battery Handbook, 2nd Edition, General Electric Company, 1975.

TOUCH-TONE DECODER SALE!

SSI-202P CMOS WE OVER PURCHASED

Our over supply can be your gain.

We've just got to try and get even so we are going to let our ham friends

 share in some of these great circuits, for a great price.
FEATURES

- Central office quality
- Band-splitting filters included on chip
- Single, low-tolerance, 5 -volt supply
- Detects either 12 or 16 standard DTMF digits
- 18-pin DIP package
- Output in either 4 -bit hexadecimal code or binary coded 2 of 8 . Use 74159 decoder for 1 of 16 output
- Uses inexpensive $3.579545-\mathrm{MHz}$ color-burst crystal for reference (Radio Shack P/N 272-1310 \$1.69)
- Excellent speech immunity

All you need is a color-burst XTAL from Radio Shack \& 1 meg resistor to make a C. O. Quality Touch Tone decoder SSI-202 is a 5 V part and unlike the older 201 is TTL compatible and will directly interface to personal computers.

These won't last long and are limited to available supply. so HURRY!!

INCLUDING SPECS. \& SCHEMATICS
In Wash. add 7.9% sales tax

R.M. FULLER CO.

902 Industry Dr., Seattle, WA 98188

In Wash. Call (206) 575-8640

WITH THE NEW EIMAC 3CX1200 CERAMIC TUBE

1500 WATTS OUTPUT, ALL MODES 160 THROUGH 15 METERS

- Pi-L network with heavy duty components.
- High efficiency bias setting for RTTY/CW.
- ALC compatible with all popular transceivers.
- Peak-reading output meter.

The Ameritron AL-1200 is designed to give years of trouble-free service at the full legal amateur output power limit. The rugged ce-

- 32 lb . Peter Dahl hypersil transformer.
- Bridge rectifier supply with computer grade capacitors.
- Inexpensive, instant warm-up tube.
- Full shielding for minimum TVI.
ramic/metal Eimac triode is capable of operating continuously at 3000 watts input.
Size $17^{\prime \prime} \mathrm{W} \times 10^{\prime \prime} \mathrm{H} \times 18-1 / 2^{\prime \prime} \mathrm{D}$ Wgt: 77 lbs .

Available at your dealer - Send for a catalog of the complete AMERITRON line.
AMERITRON, Division of Prime Instruments, Inc.
9805 Walford Avenue • Cleveland, Ohio 44102 • (216) 651-1740

~ 140

Alpha Delta's new DX-A Twin Sloper Antenna combines the tremendous power of the quarter wave sloper with the wide bandwidth of a half wave dipole. Easy to install, simple to tune.

- 160 and 80 m leg approx 80^{\prime} long 40 meter leg 33^{\prime} long installs just like an inverted V Fed with single 50 ! feedline
- Current lobe up high for maximum radiation. Can be installed between 25 and 40 feet
- Broad band performance. Although band width is determined by your installation. tests have shown 85 kHz on $160 \mathrm{~m}, 200$ kHz on 80 m , and full coverage of 40 m . Tuner usually not required
- No lossy traps A single 'ISO-RES, isolator/resonator coil is used to tune 80 and 160 meters
- Rated at 15 KW output
- Quality hardware and UV protected coil Stainless steel ensures excellent all weather pertormance
\$4995
ready to install
Available from your local Alpha Delta Deater or add $\$ 3.00$ shipping and handling. (USA only)
ALPHA DELTA соммимісатіомs.ınc.
P0. Box 571. Centervilte. Ohio 45459
(513) 435-4772 Order line - (513) $376-4180$ Tech Info (antennas only)

ARRL

 TECH-GENERAL LICENSE MANUALWritten in an easy to read and understand style, this is the guide you need for your Tech/General studying. FCC questions with complete answers (c)1985. 1st edition. \square AR-TG Softbound $\$ 5.00$
Please add $\$ 2.50$ for shipping and handling

BOOKSTORE

THE STANDARD OF EXCELLENCE

The world of CW, RTTY, and new DUAL AMTOR* is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000E.

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY) and new ARQ/FEC (AMTOR).
Code: Morse (CW includes Kana), Baudor (RTTY), ASCII (RTTY), IIS (RTTY), ARQ/FEC (AMTOR).
Characters: Alphabet, Figures, Symbols, Special Characters, Kana: Built-in-Monitor: 5^{*} high resolution, delayed persistence green monitor - provides sharp clear image with no jiggle or jitter even under fluorescent lighting. Also has a provision for composite video signal output.
Time Clock: Displays Month, Date, Hour and Minute on the screen.
Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.
Selcal (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either $170 \mathrm{~Hz}, 425 \mathrm{~Hz}$ or 850 Hz shift with manual fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125 Hz)/LOW (Mark Frequency 1275 Hz) tone pair select. Mark only or Space only copy capability for selective fading. ARQ/FEC features incorporated. Crystal Controlled AFSK Modulator: A transceiver without ESK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.
Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.
Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement with function keys. Automatic insertion of LTR/FIG code makes operation a breeze.
Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters $\times 7$ channels and 24 characters $\times 8$ channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.
Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters $\times 16$ lines $\times 2$ pages.
Sereen Display Type-Ahead Buffer
Memory: A 160 -character buffer memory is displayed on the lower part of the screen. The characters move to the left erasing one by one as soon as they are transmitted. Messages can be written during the receiving state for transmission with battery back-up memory or SEND function.
Function Display System: Each function (mode, channel number, speed, etc.) is displayed on the screen.
Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy.

Everything built in - nothing else to buy!

Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from the keyboard at any rate between 5-100 WPM (every word per minute). AUTOTRACK on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modem and between 12-600 Baud when using TTL level. The variable speed feature makes the unit ideal for amateur, business and commercial use.
Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.
"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspellings can also be erased while the information is still in the buffer memory.
Automatic CR/LF: While transmitting. CR/LF automatically sent every 64,72 or 80 characters.
WORD MODE operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.
LINE MODE operation: Characters can be transmitted by line groupings from the buffer memory.
WORD-WRAP-AROUND operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.
"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape.
Cursor Control Function: Full cursor control (up/down, left/right) is available from the keyboard. Test Message Function: " R Y" and
"QBF" test messages can be repeated with this function.
MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space tone can be used to copy RTTY.
Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3-1:6.
Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hand key and displays the characters on the screen. CW keying output circuit works according to the key operation.
CW Random Generator: Output of CW random signal can be used as CW reading practice. Bargraph LED Meter for Tuning: Tuning of CW and RTTY is very easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning.
Built-in AC/DC: Power supply is switchable as required; $100-120 \mathrm{VAC} ; 220-240$ VAC $/ 50 / 60 \mathrm{~Hz}+13: 8 \mathrm{VDC}$.
Color: Light grey with dark grey trim matches most current transceivers. Dimensions: $363(\mathrm{~W}) \times 121(\mathrm{H}) \times$
351(D) mm: Terminal Unit. Warranty: One Year Limited Sperifications Subject to Change

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED
AMATEUR-WHOLESALE ELECTRONICS
AMATEUR-WHOLESALE ELECTR
8817 S.W. 129 th Terrace, Miami, Florida 33176

MANUFACTURER:

TONO CORPORATION

98 Motosoja Machi, Maebashi-Shi, 371, Japan
*Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.

3CX1200A7 10 to 80-meter amplifier

New EIMAC tube provides 1500 watts out

For several years, I have used the popular EIMAC

 $3-1000 Z$ as the main amplifier tube in my station. I enjoy the instant-on characteristics of the tube as well as the well-matched drive requirements for a 100 -watt output exciter. Recently EIMAC introduced the 3CX1200A7, the newest addition to its line of metal ceramic external anode triodes. The electrical characteristics of the tube are identical to the $3-1000 \mathrm{Z}$ except for the increased plate dissipation (1200 watts) allowed by the external anode.I decided to modify my 3-1000Z RF deck to accommodate the new tube. The only change necessary was in the tube socket and chimney. (The 3CX1200A7 uses the EIMAC SK-410 or Johnson 248 socket commonly used for the $3-500 \mathrm{Z}$ tube. A matching glass chimney - EIMAC SK-436 -- is also available). The modification took less than eight hours. This article summarizes the results of the project.

the amplifier circuit

As indicated above, this amplifier is designed around the new 3CX1200A7 (see fig. 1), using a tuned input network ganged to the main bandswitch. The input circuit minimizes distortion products and helps provide a 52 -ohm match to the exciter. Maximum SWR presented to the exciter is $1.2: 1$. Approximately 100 watts is required to drive the amplifier to 1500 watts output. An effective ALC circuit is also included to prevent overdrive by higher power exciters.

Output impedance matching is accomplished with a pi-network designed for a Q of 12. Toroids are used for compactness for the 80 -meter pi coil and the tuned input network coils.

Also included is a grid trip circuit to disengage the amplifier should the grid current exceed 300 milliamperes. This circuit protects the tube in case of excessive drive or an improper load presented to the amplifier.

The amplifier includes an effective dynamic bias circuit. Response time of the circuit is fast enough to cut the amplifier off between syllables on SSB and between dots and dashes on CW. A defeat switch is included on the rear panel of the amplifier. When
engaged, the heat generated by the tube is substantially reduced during amplifier operation as feeling the temperature of the air exiting the amplifier cabinet will confirm.

A 100 VDC power supply is included to power the dynamic bias circuit, and a 26 VDC supply is included for panel lights and relay operation. An RF wattmeter is included for tuneup and measurement of amplifier efficiency.

amplifier control circuitry

The amplifier control circuitry is illustrated in fig. 2. 120 VAC enters the RF deck from the power supply. Power is applied to the amplifier by depressing the front panel switch S1. S1A applies 120 VAC to the HV power supply, the time delay relay TD1, the filament transformer, the 100 VDC bias supply and the 26 VDC supply. The blower receives power immediately through S1B. When the power is turned off with $S 1$, the blower (B) keeps running for approximately three minutes to cool the 3CX1200A7. This delay is accomplished through the use of the time delay relay TD1. The control circuitry is quite simple because of the "instant on" characteristics of the 3CX1200A7 tube.

grid trip protection

A grid trip module has been included in the amplifier design to protect against high levels of grid current which could be dangerous to the 3CX1200A7 tube. High levels of grid current could be caused by excessive drive, improper tuning or lack of a $50-\mathrm{ohm}$ load on the output of the amplifier. In this design, if the grid current exceeds 280 milliamperes, the circuit trips relay RL3 (see fig. 3), which breaks the VOX amplifier line to deactivate the amplifier and lights the front panel "grid trip reset" push button (S4). It is necessary to push the reset button to put the amplifier back into operation. Of course, one should determine why the amplifier exceeded 280 mA before proceeding with amplifier operation.
The circuit operates as follows: grid current is drawn through the 10 -ohm resistor (R1) as shown in fig. 1. The current flowing through the 10 -ohm resistor develops a voltage that turns on transistor Q 3 in the grid trip circuit when the current reaches 280 mA (or any other value if desired). 280 mA through a $10-\mathrm{ohm}$

[^2]
fig. 1. 3CX1200A7 RF deck schematic.

3CX1200A7 amplifier provides full legal output on $10-80$ meters.
resistor results in the development of 2.8 volts. Only 0.6 volts is necessary to turn on Q3. Therefore, a 5 -kilohm trim pot (R3) has been included as a voltage divider for adjustment.

When Q3 turns on, it serves as a switch providing
a path to ground to actuate relay RL3. A set of the relay contacts physically grounds the relay coil of RL3, taking the current load off Q3. If this feature were not provided, the transistor would start gating the amplifier on and off. It is therefore essential to latch the grid trip relay closed. Another set of contacts on relay RL3 breaks the VOX line, deactivating the amplifier. A third set of contacts applies power to the pilot light on the front panel "grid trip reset" pushbutton (S4) located on the front panel of the amplifier to make the operator aware of what happened. Pushing S4 breaks the path to ground for relay RL3, deactivating the relay and putting the amplifier back into a ready state.

This circuit provides simple and effective protection from costly mistakes during amplifier operation.

dynamic bias circuit

The amplifier design includes a dynamic bias circuit to bias the 3CX1200A7 tube beyond cut off between speech syllables on SSB or between dots and dashes on CW. This is especially useful when operating in a full break-in mode when the amplifier is placed in ready

Parts list for 3CX1200A7 amplifier (figs. 1-7).

item	description
B	blower - Dayton 1C180
cabinet	$10 \times 17 \times 14$ inch, CTS model MCLS-101714. SPP-1014 side panels
	CP-1714 chassis panel
	(CTS IntraFab, 660 Lenfest Road.,
	San Jose, California 65133)
C1	$300 \mathrm{pF} / 10 \mathrm{kV}$ vacuum variable capacitor
C2	$1000 \mathrm{pF} / 3 \mathrm{kV}$ vacuum variable capacitor
C3	1-8 pF miniature air variable capacitor
CR	HEP 170 diode or equivalent
CR1	9.1 volt, 1 watt zener diode (1N4739)
CR2	75 volt, 1 watt zener diode (1N4761)
CR3	100 volt, 1 watt zener diode (1N4764)
CRB1.CRB3	400 volt/4 ampere diode block (RS 276-1173)
CRB2	$100 \mathrm{volt/4}$ ampere diode block (RS 276-1171)
CRB4, CRB5	diode strings, 10 HEP 170 diodes in series, each paralleled by a 470 kilohm resistor and a $0.01 / 1 \mathrm{kV}$ disk capacitor
L.C	see table 2
L1,L2,L3	see table 1
14	RF wattmeter pickup coil, 20 turns No. 22 enameled wire on T-50-2 ferrite toroid core
M1	1 ampere plate meter, Triplett 320-G
M2	100μ A meter, Triplett 320-G
Q1	MJ1000 NPN Darlington or equivalent
Q2	2N3055 NPN power transistor
Q3	2N3053 NPN transistor
PC	2 turns, $1 / 2$ silver strap, 1 -inch diameter $3 \times$ 150 -ohm 2-watt resistors
RFC1	90 turns No. 20 enameled wire on 3/4-inch form
RFC2	11 turns No. 14 enameled wire on $1 / 2$-inch diameter air wound
RFC3	30 ampere bifilar filament choke, each coil is 16 turns on $1 / 2$-inch ferrite rod
RFC4, RFC8	10 turns No. 14 enameled wire on 1/4-inch diameter ferrite rods
RFC9	$1 \mathrm{mH} / 800 \mathrm{~mA}$ RF choke
RLL, RL3	4PDT Potter \& Brumfield KHU17D11, 24VDC coil
RL2	SPDT vacuum relay, 26VDC coil
RL4	2PDT mercury plunger relay, Dayton 6X598-3
RL5	DPDT power relay, Potter \& Brumfield PR-11-DY
S1,S2	2PDT push-button switches: ALCO 16TL5-22 ALCO 6T-4 yellow lens (S1) ALCO $6 \mathrm{~T}-2$ green lens (S2)
S4	momentary push-button switch, 1 pole/N.C. ALCO 16SL-11 switch ALCO 6S-2 red lens
SCR	2N1596 100 volt/1.6 ampere SCR
11	filament transformer, 7.5 volt/21 ampere
T2	80 VAC (approx.) transformer, low current
${ }^{1} 3$	24 VAC/1 ampere transformer (Stancor P8661)
T4	1400 VAC-2 kVA power transformer
TD1	time delay relay, Amperite 115-N-180 (3 minute)
Z1,Z2	MOV transient protectors V130LA10A (RS 276-570)

Notes:

1. Only the major items have been indicated in this parts list. See individual schematics to determine complete component complement. 2. The letfer M indicated under the component value of capacitors indicates silver mica.
state at all times. The circuit can save up to 500 watts of power dissipation in the idle state.

Operation of the dynamic bias circuit is quite simple. RF is sampled through the 220 pF mica capacitor, C3. A voltage doubler is formed by the 1N914 diodes, providing a DC voltage to turn on the Darlington transistor Q1. Therefore, Q1 acts as a switch to return the bias voltage to the level determined by the zener diode CR1. The crowbar circuit formed by the SCR and zener diode CR2 is a protection circuit to prevent the amplifier from going into class C operation or the cathode voltage to rise toward the value of the plate voltage when enough drive power is applied should the Darlington transistor Q1 fail to conduct. A full

The 3CX1200A7 tube uses the same socket and chimney as the popular 3-500Z.
theoretical treatment of this design is provided in reference 1.

Switch S3 provides a defeat of the dynamic bias circuit to set the operating bias level or defeat the circuit should the circuit fail in an open state. The circuit can be omitted if desired by replacing the bias module with a wire connecting the emitter of O 2 to the B-minus line (see fig. 8).

meter circuits

Metering is provided for plate current, grid current, high voltage and RF power output. Plate current is monitored at all times. This meter is in series with the B-minus lead. All other metered parameters are selected on a mulitmeter. The multimeter has a 100 mA

fig. 2. 3CX1200A7 control circuit.

Grid trip circuit (left side) and 100 -volt bias supply (right side).
movement with proper calibration resistors for various scales. Any meter movement up to a 5 mA full scale is usable if an RF wattmeter is not desired. The wattmeter requires a very sensitive meter for proper operation.

Grid current is measured by monitoring the voltage across the 10 -ohm resistor, R1, through which grid current is drawn. The 5 -kilohm trim pot, R2, is used for proper calibration. R2 can be adjusted with a battery in series with a pot and current meter placed

fig. 3. 3CX1200A7 grid trip circuit.
across R1 (see fig. 4) to vary and measure the amount of current drawn. R2 should be adjusted so that both meters read the same current.

High voltage is measured by monitoring a low voltage value developed by a voltage divider in the power supply. The sampled value is approximately 5 volts and coupled to the RF deck through the control cable.

Power is measured using a toroid-sensing RF wattmeter circuit. The wattmeter is shown in fig. 5 . Three scales are provided: 200 watts forward, 2000 watts for-

TH3 日

A high performance $4 \mathrm{GHz}, 70 \mathrm{MHz}$ input receiver featuring programmable video and audio, hand held remote, four different audio systems, switchable audio bandwidths, built-in RF modulator, two speed scanning modes and built-in stereo processor.

Mark ${ }^{\prime \prime}$
Offers independent channel selection for multiple TV sets from a single antenna, with a selection of up to 24 individual channels from a single satellite. The Mark 2 also features individually programmed audio, automatic fine tuning control. fine tuning storage, special function switches and built-in stereo processor.

SKANTIC

Offers versatility and quality performance including fine tuning and video, automatic audio and video digital memory, automatic polarization and four programmable audio modes.

NANTR

The Northeast's Leading Distributor

Satellite Video Services

Sales and Marketing Assistance Factory Authorized Service Professional Training Seminars Co-op Advertising Support Automated UPS Shipping

[^3]Satellite Video
Services NH, Inc
RFD \#2. Harriman Hill Rd.
Raymond, NH 03077
603-895-3182
800-448-0012 - National

Satellite Video
Services PA, Inc.
317 E. Pleasant Valley Blvd. Altoona, PA 16602
814-942-5003
800-242-3860 - PA Only
800-367-8899 - National

Satellite Video Services WNY, Inc. East Avenue Extension Hornell NY 14843
607-324-3435
800-641-0018 - NY Only 800-831-1134 - National
aFter a long investigation and evaluation, Everett l. gracey, former CO-OWNER OF MIRAGE COMMUNICATIONS, HAS JOINED FORCES WITH FALCON.

A FEW FEATURES:

- All-mode BIP(LAR Mobile Base Amplifiers
- All-mode MOSFET Mobile Base Repeater Amplifiers
- "Real" Repeater Amplifiers (not the add-on type)
- Optional Plug in Receiver Preamplifien (not everyone needs a receiver preamplifier)

ALL-MODE BIPOLAR AMPLIFIERS
Model 5123 (2-Meter Amplifier)
Last $\$ 235$
25 Watts in $=150+$ watts out
10 Watts in $=100$ watts out
Model 5121 (2-Meter HT Amplifier)
Lat $\$ 285$
2 Watts in $=150$ Watts out
1 Watt in = 90 Watts out
Model 5122 (2 Meter Multi-purpose Amplifier) List $\$ 275$
10 Watts in $=150+$ Watts out
2 Watts in $=30+$ Watts out
Model 5124 (1/ $/$ Meter Amplifier)
30 Watts in $=120$ Watts out
10 Watts in $=80$ Watts out
Model 5125 ($70-\mathrm{Cm}$ Amplifier)
3 Watts in $=100$ Watts out
| Watt in $=40$ Watts out

MOSFET POWER AMPLIFIERS
(Same Ranges as Bipolars)
Send for Prices)

MOSFET REPEATER

 AMPLIFIERSModel 4111 (2 Meter Repeater Amplifier)
List $\$ 225$
20 Watts in $=100$ Watts out
10 Watts in $=90$ Watts out
2 Watts in $=30$ Watts out
Model 4114 (2-Meter Repeater Amplifier)
List $\$ 365$
2 Watts in $=100$ Watts out
1 Watt in $=80$ Watts out
Model 4112 ($1 /$ Meter Repeater Amplifier) List $\$ 295$
25 Watts in $=100$ Watts out
10 Watts in $=70$ Watts out
Model 5142 ($70-\mathrm{Cm}$ Repeater Amplifier) \quad List $\$ 375$ 30 Watts in $=100$ Watts out
10 Watts $i n=40$ Watts out

For more information see your local dealer or call factory for details.

Post Office Box 8979
Newport Beach, CA 92658
Telephone: (714) 760-3622

DESIGN EVOLUTION IN RF P.A.'s

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay). Amplifier useable with drive powers as low as $1 / 2$ watt.
- Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD) Device NF typically .5 dB .
- Thermal shutdown protection incorporated
- Remote control capability built-in
- Rugged components and construction provide for superior product quality and performance
- All models include a complete operating/ service manual and carry a factory warranty on all components
- Designed to ICAS ratings, meets FCC part 97 regulations
- Approximate size is $2.8 \times 5.8 \times 10.5^{\prime \prime}$ and weight is 5 lbs .

Specifications/price subject to change
Now with GaAs FET Preamp

	(MHz)	(W)	(W)	NF	GAIN
0508	$50-54$	170	1	-	-
0508 G	$50-54$	170	1	6	15
0510	$50-54$	170	10	-	-
0510 G	$50-54$	170	10	6	15
1410	$144-148$	160	10	-	-
1410 G	$144 \cdot 148$	160	10	6	15
1412	$144 \cdot 148$	160	30	-	-
1412 G	$144-148$	160	30	6	15
2210	$220-225$	130	10	-	-
2210 G	$220-225$	130	10	7	12
2212	$220-225$	130	30	-	-
2212 G	$220-225$	130	30	7	12
4410	$420-450$	100	10	-	-
4410 G	$420-450$	100	10	1	12
4412	$420-450$	100	30	-	-
4412 G	$420-450$	100	30	1	12

1. Models with G suffix have GaAs FET preamps. Non-G suffix units have no preamp.
2. Covers full amateur band. Specify 10 MHz Bandwidth for 420.450 MHz Amplifier.
*SEND FOR FURTHER INFORMATION *
TE SYSTEMS

P.O. Box 25845

Los Angeles, CA 90025
(213) 478-0591

NEW!

THE ARRL ANTENNA COMPENDIUM
 Because of space limitations in QST, we don't have room to run all of the good antenna articles that are submitted. The solution to this problem? THE ARRL AN-
 TENNA COMPENDIUM! You'll find 178 pages packed with new material on quads, loops, log periodic arrays, other beam antennas, multiband antennas, verticals, reduced size antennas, plus such interesting topics as: Mr. Smith's "Other" Chart and Broadband Rigs: Available Power. SWR and Loading, Baluns: What They Do and How They Do It: The Horizontal Dipole Over Lossy Ground; and Antenna Polarization. Copyright 1985. Paperbound $\$ 10.00$ in the U.S.. \$11.00 elsewhere

THE AMERICAN RADIO RELAY LEAGUE 225 MAIN ST
NEWINGTON. CT 06111

ALL BAND TRAP ANITENTLS!

SAY YOU SAW IT IN
 ham radio!

ham
 radio Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad. circle the appropriate number on this card, affix postage and send to us We'll hustle your name and address to the companies you're interested in.
$\begin{array}{llllllllllllllllllllllllllllll}101 & 113 & 125 & 137 & 149 & 161 & 173 & 185 & 197 & 209 & 221 & 233 & 245 & 257 & 269 & 281 & 293 & 305 & 317 & 329 & 341\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}102 & 114 & 126 & 138 & 150 & 162 & 174 & 186 & 198 & 210 & 222 & 234 & 246 & 258 & 270 & 282 & 294 & 306 & 318 & 330 & 342\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}104 & 116 & 128 & 140 & 152 & 164 & 176 & 188 & 200 & 212 & 224 & 236 & 248 & 260 & 272 & 284 & 296 & 308 & 320 & 332 & 344\end{array}$

 $\begin{array}{llllllllllllllllllllllllllllllllllll}107 & 119 & 131 & 143 & 155 & 167 & 179 & 191 & 203 & 215 & 227 & 239 & 251 & 263 & 275 & 287 & 299 & 311 & 323 & 347\end{array}$

$\begin{array}{lllllllllllllllllllllllll}112 & 124 & 136 & 148 & 160 & 172 & 184 & 196 & 208 & 220 & 232 & 244 & 256 & 268 & 280 & 292 & 304 & 316 & 328 & 340\end{array}$

Limit 15 inquiries per request.
NAME \qquad CALL \qquad
ADDRESS \qquad ITY \qquad STATE \qquad ZIP

ham
 radio

READER SERVICE CENTER
P.O. BOX 2558

WOBURN, MA 01888

ATTN: Reader Service Dept.
ward, and 200 watts reflected. Voltage lines from the wattmeter into the front meter compartment use 0.001 feed-through capacitors to keep RF out. The wattmeter is in the RF line at all times even if the amplifier is not turned on.

Labeling the meters takes a lot of patience but really contributes to the appearance of the amplifier. It is necessary to choose a meter with an analog scale that has the correct number of divisions. However, the meter labeling makes no difference. In a very clean environment, remove the meter scale plate from the meter. Any markings on the meter can be removed with a pencil eraser. (Rub lightly but persistently.) The markings will come off the face plate, leaving a clean surface with an analog scale. The new number and letter markings can now be applied. I use dry transfer " lettering to mark the meter scales to the desired values. The dry transfers now available from Radio Shack may be too large for small meters; varied assortments of smaller letters are available from most art supply stores.

RF relay sequencing

It is important to properly sequence the input RF relay, RL1, and the high power vacuum relay, RL2, to insure that the antenna is always connected to the amplifier before RF drive power is applied. This is accomplished by closing the output relay, RL2, slightly before the input relay RL1.

The timing circuit is shown in fig. 6. The 150 -ohm resistor and the $100-\mu \mathrm{F}$ capacitor form a time constant that delays closing of the input relay, RL1. The timing can be checked by applying a small voltage across the contacts of both RL1 and RL2 and watching the voltages on the scope as the amplifier is keyed up. The output relay, RL2, should close approximately 25 milliseconds before the input relay, RL1. The timing is adjusted by increasing the value of the $100-\mu \mathrm{F}$ capacitor for longer delay or decreasing the value for shorter delay. The timing constants are totally dependent upon the relays used for RL1 and RL2. Avoid long time delays since a 50 -ohm load isn't presented to the exciter when RL1 is open.

lead filtering

All control and power leads entering or leaving the RF deck are filtered with a pi-section circuit. The coils are made by winding ten turns of No. 16 enamel wire on $1 / 4$-inch diameter ferrite rods. Bypass capacitors are placed to ground at each end of the coil to form a pi-section. Locate each filter as close to the entry or exit point on the panel as possible. The line filters may not be necessary but provide insurance against RF running on leads outside the cabinet.

tank circuit

The tank circuit uses a pi-network design. The

fig. 4. Set up for grid trip/grid current meter adjustments.

fig. 5. RF wattmeter circuit for the 3CX1200A7.

Dynamic bias module.

fig. 6. RF relay sequencing.

Bottom view of the amplifier illustrates the method used to isolate the RF circuitry from the control and power devices.
design was originally constructed with the $3-1000 \mathrm{Z}$ several years ago when the pi-network was the convention. Recent designs recommend a pi- L tank design because of a potential 15 dB improvement in attenuation of the second harmonic. However, the pi-L network needs a double pole band switch to select the inductance on both the pi-coil and the L-coil. Since a single pole switch was already in the amplifier and there was no evidence of TVI, the pi network was not retrofitted with a pi-L design. However, if this amplifier is built from "scratch," it is recommended that a pi-L design be used.

The design parameters for the pi and pi-L circuits are provided in table 1. The value for the plate impedance is 2500 ohms.

Vacuum variable capacitors are used for both the tune (C1) and load (C2) controls. Major advantages of vacuum capacitors include compactness, wide capacitance range with a low minimum capacitance necessary for 10 meters and tuning dial resettability. Equivalent air variables can be substituted. However, they are larger and their Q on 10 and 15 meters is lower.
table 1. Tank circuit design parameters.
pi network:

$\mathbf{F}(\mathbf{M H z})$	C1	C2	\mathbf{L}	$\mathbf{Q}=\mathbf{1 2}$
3.5	206	1174	9.95	$\mathbf{R}_{\mathrm{L}}=2500$ ohms
7.0	107	608	5.15	
14.0	54	307	2.60	
21.0	36	204	1.74	
28.0	27	153	1.30	

coil: 4 turns, $1 / 4$-inch tubing, 2 -inch diameter
13 turns, $1 / 4$-inch tubing, 3-1/4 inch diameter
taps: 28.0-3 turns on 2 -inch coil
21.0-1 turn on 3-1/4-inch coil
14.0-4 turns on 3-1/4-inch coil
7.0-11 turns on 3-1/4-inch coil
3.5 MHz toroid tank coil
$3 \times$ T200-2 cores taped together with fiberglass tape
25 turns No. 12 enameled wire
pi-L network:

F(MHz)	C1	C2	L1	L2
3.5	244	1132	10.99	4.45
7.0	113	503	6.03	2.24
14.0	55	245	3.08	1.24
21.0	37	164	2.05	0.83
28.0	26	112	1.48	0.60

$$
\begin{gathered}
\mathbf{Q}=12 \\
\mathrm{R}_{\mathrm{L}}=2500 \text { ohms }
\end{gathered}
$$

input network

An input network is included to minimize distortion products and help insure that a 50 -ohm load is presented to the exciter. The input network is a pi design with a $\mathrm{Q}=1$. Table 2 summarizes the component values for each pi-section. The capacitors have been selected as standard values. The coils are wound on T50-2 toroid cores. The cores are large enough for the 100 watts drive power without overheating. However, if room permits, use T68-2 or even T75-2 cores to provide an extra safety margin.

The input network is built as a separate module (see input network pictorial) and ganged to the main band-
table 2. Input network design parameters

band	$\mathbf{C 1}(\mathbf{p F})$	$\mathbf{L}(\mu \mathrm{H})$	$\mathbf{C 2}(\mathbf{p F})$	No. turns (T50-2)
80	860	2.15	860	$23 \mathrm{t} /$ No. 20
40	440	1.11	440	$17 \mathrm{t} /$ No. 20
20	220	0.56	220	$12 \mathrm{t} /$ No. 18
15	150	0.38	150	$9 t /$ No. 14
10	110	0.28	110	$8 t /$ No. 14

fig. 7. HV power supply.

Input network is built as a separate module.
switch using a small chain sprocket available from reference 2. The unit was fully tested prior to installation into the amplifier.

cooling

Proper cooling is essential for long tube life. The 3CX1200A7 tube socket is mounted approximately $1 / 2$ inch below the chassis. The under chassis is pressurized by a Dayton 1C180 blower mounted on the rear panel. The air flow is ducted by the tube chimney up
around the base of the tube, through the external anode, and out the top of the amplifier. Refer to the 3CX1200A7 technical data sheet for more information on the cooling at different altitudes. ${ }^{3}$

HV power supply requirements

A good solid HV power supply is required to get the most out of any amplifier. This amplifier uses a 4000

Top view of amplifier illustrates small size of 3CX1200A7. Compare it to the vacuum variables in the lower section of the photo.

$\not{ }^{\text {the }}$ tim notebook

a $\$ 100$ printer for the Commodore 64

The interface and program for converting an ASR-33 teletype machine to an inexpensive printer for the VIC-20 ('VIC-20 Printer," ham notebook, September, 1984, page 88) can be adapted for use with the Commodore 64.

Figure 1A of the original article remains unchanged; in fig. 1B, only the labeling of the user's port is changed. Figure 2 is replaced with a program listing that provides instructions to the Commodore 64.

Like its VIC-20 predecessor, the ASR-33 printer for the Commodore 64 produces typewriter-quality text appropriate for most data listing applications. Because ASR-33's can be found for as little as $\$ 50$ to $\$ 75$ - and because other parts and materials can be found in junk boxes or very cheaply - the total cost of this project should not exceed $\$ 100$.
J.W. Dates, W2OLI

fig. 1A. Interface circuit uses multipin edge connector to match C-64 requirements.

fig. 1B. Interface circuit that ties a C-64 to an ASR-33.
fig. 2. C-64/ASR-33 program listing.

fig. 8. Alternate circuit for conventional bias control.
volt power supply. The HV drops to 3600 volts when 800 mA is drawn.

The power supply is built as a separate unit that sits behind the operating desk. Its circuit is shown in fig. 7.

Set in 71/2 cubic yards of concrete, author's 70 -foot Tri-ex 470D tower is completely self-supporting, with fully motorized crank-up, tilt-over capability. Lower antenna is a KLM KT34XA; upper antenna, at 80 feet, is a two-element Cushcraft 40 -meter beam. Both were erected by K8RA without assistance.

Amplifier rear view. Notice the dynamic bias defeat switch in the lower right corner.

K8RA's station is largely home-brewed. Shelf holds receiver described in August, 1983, edition of QST; construction details will appear in W6SAl's forthcoming revision of The Radio Handbook. To the right are two homebrewed keyers and a speaker to match the amplifier. On desk top are a second speaker, a Collins KWM 380 transceiver, a Collins 30 L1 linear amplifier, a rotor control and a 2 -meter rig. Rack, at right, contains homebrewed equipment exclusively; from top to bottom, the 3CX1200A7 amplifier described in this article, a station monitoring oscilloscope, a station control console, and an antenna tuner with built-in memory. Blank panel marks space for new 8877 linear amplifier currently under construction. (No. Jerry didn't build the clock; it was a $\$ 25$ "find" at Dayton. But he did build the 16×22-foot solid cedar addition to house his station. Skylights, not pictured here, afford overhead view of antennas.)

amplifier tuning

Amplifier adjustment is initally done into a 50 -ohm dummy load. With filament and operating plate voltage applied, grid and plate current meters should read zero when the amplifier is not keyed up by the exciter. Shorting the VOX in/out line engages the antenna relays which switches the amplifier into the RF line. Static plate current should still be zero if the dynamic bias circuit is used. If the dynamic bias circuit is not

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

\author{

- A New Worldwide DX Ham Band open 10 hours a day.
}
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

\author{

- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
}

- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

ORBIT Magazine Subscription:

Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $\$ 24$ a year, $\$ 26$ outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27

Washington, DC 20044

$$
301 \text { 589-6062 }
$$

included or bypassed with the defeat switch, S3, the static plate current should rest at approximately 150 mA . If grid current is observed with the plate or tune capacitors in any position, it is probably a sign of parasitic oscillations and should be corrected. ${ }^{4}$

Drive power can now be slowly increased until the plate current is approximately 250 mA . The Tune and Load controls are adjusted for maximum power output as indicated on the RF power output meter. Excitation is now increased and the plate and load tuning capacitors adjusted until approximately 800 mA plate current with 200 mA grid current is achieved, with maximum output indicated. When the above conditions have been met, the loading should be increased slightly to insure proper linearity. The RF power output should not exceed 1500 watts. Use a scope to monitor signal quality if available. Under SSB speech conditions, peak plate current with no clipping or compression will kick to about 400 mA and grid current to about 100 mA .

conclusion

The amplifier has been in operation for over six months and has operated flawlessly. As expected, another fine tube by EIMAC.

references

1. J.A. Bryant, W4UX, "Electronic Bias Switching for RF Power Amplifiers," OST, May, 1974, page 36.
2. Precision Mechanical Components, Winfred M. Berg, Inc., 499 Ocean Avenue, East Rockaway, New York 11518.
3. 3CX1200A7 Technical Data Sheet, Varian/EIMAC, 301 Industrial Way, San Carlos, California 94070.
4. William Orr, W6SAI, Radio Handbook, 20th Edition, Howard W. Sams, Inc., Indianapolis, Indiana, (See "Low-frequency Parasitic Suppression," page 17.20.) (The 22nd Edition of Radio Handbook is available from Ham Radio's Bookstore, Greenville, New Hampshire 03048, for $\$ 12.95$ plus $\$ 3.50$ shipping and handling.)
ham radio

DO YOU	Nuts $¢$ voits
KNOW	HAM GEAR COMPUTERS
WHERE	
TO FIND	
REAL	
BARGAINS	
on NEW and	USED
ELECTRON	Equipme

You'll Find Them in the Nation's No. 1 Electronic Shopper Magazine

NUTS \& VOLTS

Now in Our 5th Year

Nuts \& Volts is published MONTHLY and features: NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS - LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION SUBSGRIPTION RATES
\square One Year - 3rd Class Mail $\$ 10.00$
\square One Year - Ist Class Mail
$\$ 15.00$
\square One Year - Canada \& Mexico (in U.S. Funds) . . $\$ 18.00$
\square Lifetime - 3rd Class Mail (U.S. Only)
$\$ 35.00$

orber mows

$\begin{array}{lll}\text { SEND: } & \square \text { CHECK } & \square \text { MONEY ORDER } \\ & \square V I S A & \square \text { MASTERCARD }\end{array}$
TO: NUTS \& VOLTS MAGAZINE P.O. BOX IIII-H

PLACENTIA, CALIFORNIA 92670 (714) 632-772I

Name
Address
City
State Zip

Card No.
Exp. Date
IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!

Your Ham Tube Headquarters !

Use Your Wireless Control FROM ANY ROOM!
Works with most infrared remote control receivers or VCR's.

ham radio TECHINIOUES $\beta^{\mu \prime 2}$

big signals from the north

Have you heard those outstanding signals from Finland? Every active DXer has heard these block-busters in DX contests. Why? Because our friends up north have no hesitation about erecting giant antennas.

Consider the antenna system that Marti, OH2BH, uses. A photo of his "Christmas Tree" systems and rotator are shown in figs. 1 and 2. The 140 -foot (42 meter) rotatable steel tower was manufactured and installed by OH8QD. It is guyed by nonmetallic Parafil ropes which terminate on slip rings. A heavy duty ART-8000 rotator supports the system.
A brace of six-element KLM beams is mounted on the tower - six over six on 20 meters at the 140 -foot (42.6 meter) and 170 -foot (51.8 meter) levels. Single six-element beams for 21 and 28 MHz are at the 120 -foot (36.5 meter) and 95 -foot (29 -meter) levels. Antenna switching is accomplished by a set of remotely controlled vacuum relays located at the 105 -foot (32meter) level.

The relay allows a selection of either one or both of the antennas. Three SPST (single pole, single throw) relays are used in fig. 3. The relays are shown in the "off" position. Coax line L 1 is an electrical $1 / 4$-wavelength of 75 -ohm coax and transforms the nominal 50 -ohm antenna feedpoint resistance to about 112 ohms. The two 112 -ohm ports at relay 2 are put in parallel and become a 56 -ohm termination that closely matches the 50 -ohm
system design value. The relays are in a weatherproof box mounted halfway between the antennas. Fifty-ohm lines from the box run to each antenna.

A representation of the relay wiring in the box is shown in fig. 4, as is the switching table located at the operating position.

fig. 1. The "Christmas tree" antenna at the contest site of Marty. OH2BH. Six-over-six elements on 20 meters, backed up by single six-element beams on 21 and 28 MHz are mounted on the 170 -foot high tower. The $20-$ meter beams can be switched in combinations from the operating position.

To reduce vibration in the antenna system, which could be destructive in harsh winter storms, each element has a 5 -foot (1.5 meter) length of rope cemented into the inside of the outer element tips.
Another interesting antenna installation is that of Simon, OH8OS. A closeup view is shown in fig. 5 and the slipring assembly is shown in fig. 6. The antenna is composed of eight sixelement beams, stacked two-overtwo! OH6JW is believed to have a similar setup. The tower sits on a rotator and the guys are attached to slip rings at appropriate levels.
No doubt other big arrays exist. I'd like to receive pictures of them to put in this column!

how about 160 meters?

Even though there aren't any stacked, rotary arrays on 160 meters that I know of, there are certainly some big signals from well-known DXers on this band. One of the prominent signals on this band (and on others) comes from Jay, AD8C. Jay has a 106foot (32.3 meter) Rohn tower, guyed at three levels with $1 / 4$-inch (0.6 cm) diameter stranded steel wire. Only the top set of guys is broken by insulators at 25 -foot (7.6 meter) intervals. A length of heavy-wall aluminum tubing projects 15 feet (4.5 meters) above the top of the tower. The tower is turned by a W0MLY-modified prop-pitch rotator.
On 160 meters, the tower is shuntfed with an 82 -foot (25 meter) length of electrical conduit as the gamma rod, spaced 1.5 feet (0.45 meter) from the

fig. 2. The 170 -foot high tower of OH2BH is rotatable. This is view of the base support and the offset rotating mechanism. The tower is guyed by nonmetallic Parafil ropes which terminate on slip rings.
tower. Thirty radials are used, with 15 of them a full quarter-wavelength long. A $5 \mathrm{kV}, 1000 \mathrm{pF}$ vacuum variable capacitor is used as the gamma capacitor. The 2-to-1 bandwidth of the antenna is about 55 kHz .

As for the other bands, Jay uses five phased slopers on 80 meters, patterned after the 40 -meter system described in the ARRL Antenna Handbook (1974 edition). It provides about 3 dB forward gain and a front-to-back ratio of about 10 to 15 dB .

The rest of the antennas include: a three-element Yagi for 7 MHz at 107 feet (32.6 meters), a four-element Yagi for 14 MHz at 120 feet (36.5 meters), and four-element Yagis for 15 and 10 meters at 55 and 113 feet (16.7 and 34.4 meters). To complete the "antenna farm," there is an eight-element Yagi for 2 meters at 95 feet (29 meters).

Jay says he is satisfied with the installation that it has withstood severe winter storms, and does a "credible job" in DX pileups, particularly on the lower bands.

One of the outstanding 160-meter signals from Asia comes from Kuni, JA7NI, who lives in a three-story
apartment house. Atop the building Kuni has a 46 -foot (14 meter) high heavy wall aluminum mast (fig. 7). The mast is top-loaded by a 76 -foot (23 meter) length of wire that slopes downward to a short pole mounted on an adjacent building. The aluminum roof trim of his building is used as a ground connection. The antenna works well; Amateurs in all US districts have been contacted, with many QSOs made along the east coast, including WA2SPL, W1FC, W2FJ, K2EK, KC2SB, W3ESU, and others.

After getting this information, I wrote Joe, WA2SPL, to see what antennas he's used for DX work to Japan. He told me that his first 160 -meter antenna was an invertedvee with the apex at 150 feet $(45.7$ meters) and the ends at 75 feet (22.8 meters). Joe says that although it was a "pretty good" antenna for transmitting, precipitation static during snow storms made the antenna useless for receiving. He then put up a 1000 -foot (348 meter) Beverage antenna for receiving that worked very well. On the common assumption that "if big is good, bigger is better," Joe erected a 1500-foot (457 meter) Beverage wire

fig. 3. Antenna switching system at OH2BH permits selection of lower, upper, or both antennas.
that proved to be even better than the shorter one.

The next step was to raise the inverted-vee to 200 feet (61 meters), with the ends at 90 feet (27.4 meters). This produced an immediate improvement in his signal - to the point at which he couldn't hear some of the DX t'.at called him! So Joe went back to modifying the Beverage receiving antenna.
It was obvious that more and better Beverages were needed, so Joe put up a 2100 -foot (640 meter) wire for Europe, a 1500 -foot (457 meter) wire aimed at Japan, a 1000 -foot (348 meter) wire for South America, a 1,000-foot wire on the Caribbean and a 3100 -foot (944 meter) wire aimed at Australia/New Zealand. (Where do these guys get the space to put up these antennas?)

NEMAL ELECTRONICS INTL., INC.
SEE US AT DAYTON BOOTH \#104 your one stop coax supplier!

Oniy Nemal offers the quality construction RG59/U copper shieiding made to mit spec JAN C 17 12 gauge conductors tinned copper drain wires and a true drect butial polyethyienelackel

HARDLINE

Two styles, two sizes for all installation needs - Aluminum Outer Conductor wilth Polvelthylene Jacket $1 / 2$ inch loss $4888 / 100 \mathrm{Ht}$ a 30 MHz $368 \mathrm{~dB} / 100 \mathrm{ft} 961000 \mathrm{MHz} \quad \$ 125 / \mathrm{tl}$

Corrug
$1 / 2$ inch loss $38 \mathrm{~dB} / 100 \mathrm{ft}$. (4) 30 MHz (FLC12-50J) $2.78 \mathrm{~dB} / 100 \mathrm{ft}$ at 1000 MHz $7 / 8$ inch loss $.13 \mathrm{~dB} / 100 \mathrm{ft}$. 38 MH (FLC12-78J) $13 \mathrm{~dB} / 100 \mathrm{ft}$. (4) 1000 MHz
5159.7 COMPARE RG $213 \quad 1.25 \mathrm{~dB} / 100$ (i) $\quad 30 \mathrm{MHz}$ $\begin{array}{lll}1.25 \mathrm{~dB} / 100 & 30 \mathrm{MHz} \\ 8.5 \mathrm{~dB} / 100 & \text { (i) } \\ 1000 \mathrm{MHz}\end{array}$

HARDLINE CONNECTORS
$1 / 2$ inch aluminum UHF M/F $\$ 19.00$ Type N M/F $\$ 2200$ $7 / 8$ inch aluminum UHF M/F $\$ 4900$ Type N M/F $\$ 4900$ $1 / 2$ inch copper UHF MF $\$ 22.00$ Type N M/F $\$ 22.00$ $7 / 8$ inch copper UHF M/F $\$ 49.00$ Type N M/F $\$ 49.00$

shipping

Cable - $\$ 6.00$ per 100 ft .
Connectors - $\$ 3.00$ per order
Orders under \$20 add' \$2 additional plus shipping. Charge card - orders over $\$ 30$ only
COD add $\$ 2.00$. Florida Residents add 5%
FACTORY AUTHORIZED DISTRIBUTOR AMPHENOL, CABLEWAVE, COLUMBIA, KINGS BLONDER-TONGUE, TYTON, B\&K

\author{

- coaxial cable
 - SMATV PRODUCTS
 - MULTICONDUCTOR CABLE
 CONNECTORS-ADAPTERS
 - HARDLINE
 - cable ties
 - computer cable
 - CRIMP TOOLS
 - FIELD STRENGTH METER
}

COAXIAL CABLE SALE

\section*{POLYETHYLENE DIELECTRIC} RG-8N 96% shield Mil Spec ($52900 / 100$) or $314 / \mathrm{m}$ RGI14 9606 sheid 75 ohm mis spec $35-25^{2 / 4}$ RGGSB/U double shield (RG-58 ske) 50 ohm 45° in RGS50 mil spee 9664 c sheici RG62AU 96% shield mil spec 93 ohm . $12^{8 / f t}$ RG174/4 min $50 \mathrm{II} \mathrm{mil} \operatorname{spec} \mathrm{mon}$ | RG213 noncontaminating 96% shield mil spec | $36^{6} / 7 t$ |
| :--- | :--- | RG214/U double sivet shield 50 ohm $\quad \$ 165 / \mathrm{m}$ RG214/U tinned copper

$$
\begin{aligned}
& \text { Ric214/U double shield } 5085 / 8^{*} 00 \\
& \text { RG217/U }
\end{aligned}
$$

LOW LOSS FOAM DIELECTRIC

 RG $8 \times$ (Miri 8) 9540 shield($\$ 1500 / 100$) or $17 \mathrm{~s} / \mathrm{ft}$ RG8U 80% sheid ($\$ 19.00 / 100$) or $22^{8} / 11$ RG-8/U 97\% shield 11 gu (eq Beiden 8214) RG58U 80\% shield
RG59/U 1009\% loil shield TV type RG59/U 100% toil shield TV
RG59/U 70% copper shield

type

 RG59/U 709\% coppet shield HEAVY OUTY ROTOR CABLE $2 \cdot 16$ ga $6-20 \mathrm{ga}$ Rotor cable $2-18$ ga $6-22$ ga Poly bunal JktComplete line of multiconductor cables avalable

CONNECTORS MADE IN USA Amphenol PL 259 PL-259 and/or SO-239
65° ea of $10 / 8599$ PL-259 and/or SO-239 $10 / \$ 5.99$
$\$ 179$ Double Male Connector PL-258 Double Female Connector PL-259 Silver- Teflon Kings 988°
159 Reducer UG 175 or 176 or $10 / \$ 2.00$ UG-255 (PL-259 to BNC) E59A (TV type) $\$ 279$
$\$ 101800$ FS9A (TV type) 24^{24} of $10 / \$ 2.00$ UG-88C/U BNC Male for RG-58. Amphenol UG 273 BNC.PL 259 Amphenol
$3 / 16$ inch Mike Plug for Collins etc. (cutoff) $\$ 1.25$
$\$ 3.00$ shipping
Cable - 53.00 per 100 ft .
Connectors - add 10%, $\$ 3.00$ minimum
Orders under \$20 add \$2 additional plus shipping. Charge card - orders over $\$ 30$ only
COD add $\$ 2.00$. Florida Residents add 5%.

GROTH-Type

 COUNTS \& DISPLAYS YOUR TURNS- 99.99 Turns
- One Hole

Panel Mount

- Handy Logging Area
- Spinner Handle Available Case: $2 \times 4^{\prime \prime}$; shaft $1 / 4^{\prime \prime} \times 3^{\prime \prime}$

$\begin{aligned} & \mathrm{TC2} \\ & \mathrm{TC} 3 \end{aligned}$		Knob 1.5/8
Spinner Add		Model TC3: Kkirt 3"; Knob 2-3/8
es	de UPS	

P.O. Box 122, Itasca, III. 60143

CADDELL COIL CORP 35 Main Street
 35 Main Street Poultney. VT 05764 802-287-4055 64

BALUNS
 baluns

Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherprool box and connect them directly at the antenna. They are designed for $3-30 \mathrm{MHz}$ operation. (See ARRL Handbook pages 19.9 or 6-20 for construction details.)
100 Watt (4:1, 6: 1, : : 1 , or $1: 1$ impedance-select one) $\$ 8.50$ Universal Tranamatch 1 KW ($4: 1 \mathrm{impedance}$) Universal Transmatch 2 KW ($4: 1$ Impedance) Universal Tranamateh i KW ($6: 1,9: 1$ or $1: 1$-seiect one) 14.00 Universal Transmatch $2 \mathrm{KW}(6: 1,9: 1$ or $1: 1$-select one) 16.50
Please send large SASE for info.
12.50
1500
1。

DRAKE R-4/T-4X OWNERS AVOID OBSOLESCENCE

PLUG-IN SOLID STATE TUBES!
Get state-of-the-art performance. Most types available
INSTALL KITS TO UPGRADE PERFORMANCE!

- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier

TUBES \$23 PPD KITS \$25 PPD

OVERSEAS AIR $\$ 7$
SARTORI ASSOCIATES, W5DA
BOX 832085
RICHARDSON, TX 75083 214-494-3093
$\checkmark 186$

-	SYNTHESIZED SIGNAL GENERA	
$\underset{\text { USA }}{\text { MADE } \operatorname{IN}}$		MODEL SG-100F $\$ 429.95$ delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy + /- 1 part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc @ $1 / 2$ Amp Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.
$\vee 187$

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.

"HAM HOTLINE"

THE PROVEN MONEYMAKER

The "Ham Hotline" is a complete mailing list of novice amateur radio operators and current hams who have renewed, upgraded or modified their FCC licenses. These ham enthusiasts have proven to be excellent prospects for radio equipment, accessories and publications.

The Hotline is UPDATED EVERY TWO WEEKS with an average of 8,000 names and addresses each month. And, because we know the Hotline is the most up-to-date amateur radio listing available, we'll guarantee 98% deliverability.

Target your sales efforts to your most likely buyers. Call DCC Data Service today and begin your subscription to the "Ham Hotline" ... the proven moneymaker.

DCC Data Service, Inc.
1990 M Street, N.W. Suite 610
Washington, D.C. 20036
(202) 452-1419

- 188

fig. 4. Complete schematic of OH 2 BH antenna selection relays. L1 and L2 are $1 / 4$-wavelength sections of 75 -ohm coxial cable.

After a few months Joe found out that a Beverage antenna could be too long. He pruned the 3100 -foot wire back to 1500 feet (457 meters) and it worked much better.

With each antenna, a 20 dB preamplifier was used to bring signals up to good copy. By this time, Joe had 150 countries to his credit on 160 meters!

Even with his success with the Vee and the Beverages, Joe was curious about the luck his DX friends had with vertical antennas on 160 meters. For various reasons, he couldn't shuntfeed his 200 -foot tower, so he dropped a rope down on a 45 -degree angle to the ground and lowered a wire to ground level from the 130 foot (40 meter) elevation on the rope. He placed 24 quarter-wave radials beneath the vertical antenna.

He soon discovered, by direct comparison, that under no conditions did the vertical perform better than the

fig. 5. The monster 20 -meter array of Simon, OH 8 OS . The antenna consists of eight sixelement beams, stacked two-over-two. Simon puts through an S-9+ signal on the West Coast of the USA when other Europeans are inaudible. The complete tower is rotatable.
high Vee antenna. He was sure that the vertical was relatively worthless until he later met Dana, W1CF, and went to Dana's station to work it during a $C Q$ Worldwide DX contest. The station was equipped with two 1200 -foot (365 meter) Beverage receiving antennas, plus two Col•Atch•Co 61-foot (18.6 meter) verticals with 80 radials under each one. The contest results were amazing - the W1CF station
ended up with 830 QSOs and a score of 323,000 points!

Now Joe is wondering why his fullsize vertical seemed to perform so poorly. Too few radials? Low conductivity ground in the vicinity of the antenna? He may soon have the answer. He's moving to a new location, and by the time you read this, he may have put up his new 160-meter antenna system - four full-size, phased

fig. 6. Slip-ring installation on tower of OH8OS. Would you care to climb the ladder to the top array? (Visible at top of picture is the arm of the crane ready to lift the antennas to their final positions on the tower.)
verticals on a mountain in northern Vermont. JA7NI, keep your ears open for this one!

You can be a topnotch 160 -meter DXer with only a simple antenna. Bob, VE1YX, says, "No super-antenna here! I have a simple, coax-fed dipole, 60 feet high on a hilltop about 450 feet above sea level. So far, 135 countries - the best DX being VK6HD long path at 2100Z."

long-wave hams in Australia

Sixteen years ago, before WARC 79, the United States considered an Amateur band in the $160-190 \mathrm{kHz}$ region. The idea had merit, but opposition arose because this was the range used by carrier current data transmissions on power lines and also by longwave European broadcasting stations. Sadly, the idea was dropped before WARC 79 started.

Even so, John (VK3ACA) and Peti (VK3QI) pursued the idea with tr Department of Communications Australia and, after a pause, they weI issued experimental licenses for lov frequency operation on 196 kHz (15: meters). John received the call sig AX3T35 and Peter became AX3T36. third Amateur, Dennis (VK3WV), joir ed them and got the call sign VL3 (fig. 8). The stations all ran about 1 C watts input.

Antennas were a problem. AX3T? used a 30 -foot vertical with a huc base loading coil and an extensiv grounding system. He estimated h antenna efficiency was about 0.37 pe cent. Station VL3Y used a 135 -for wire, which wasn't much better. Eve with the poor antennas, the first cot tact was made in April, 1981. Cot tinued contacts between the three sel tions showed that the propagatio range via ground wave was about $3 C$ miles during daylight, and possib more during the hours of darkness.

AX3T35 is writing an article, scher uled to appear shortly in the journal c the Wireless Institute of Australis Amateur Radio, about the experience of the only three licensed low-fre quency ham staions in the worlc (Good work, lads - I'll put a shrim on the barbie for you!)

an anti-jamming HF loop antenna

People other than Radio Amateur are interested in efficient and effectiv HF antennas. Radio Free Europe, i particular, tries in every way to corr bat the Soviet jamming that plague their broadcasts. In this regard, the have published information on buildin a simple and inexpensive direction: receiving antenna that can be helpfi in reducing jamming interference Details of this antenna are shown i (fig. 9.)

The antenna consists of a shielde loop made of coax cable (RG-58/U, c RG-59/U, for example). A smaller loo couples the tuned loop to the receive To hold the cables in the loop form a wooden support in the shape of cross is used. The coax is passe

fig. 9. Receiving loop recommended by "Radio Free Europe." (Dimensions provided in centimeters.)

fig. 7. Apartment antenna of 160 -meter DX operator Kuni, JATNI, consists of top-loaded 46-foot (14 meter) mast atop a three-story apartment building. Shield of coax is grounded to aluminum roof trim.
through appropriate holes in the structure. A variable capacitor at the open end of the loop tunes it to the required frequency. The coupling link matches the symmetrical, balanced loop to the unbalanced coax line to the receiver.

The vertical portion of the support structure is hinged to allow tilting the antenna for improvement of the rejection null. The antenna can be rotated horizontally to provide both azimuth and elevation alignment.

To cover the shortwave spectrum from 4 to 26 MHz , three loop sizes are required, as shown in fig. 9.

To use the loop antenna, receiver and antenna are tuned for maximum signal at the desired frequency. The antenna is then rotated and tilted to minimize the interfering signal. A reduction of $30-$ to- 1 in jamming strength is predicted for short wave
listeners, depending upon the location of the jamming station with respect to the desired station.

While Radio Amateurs may not use the loop for reduction of intentional jamming, this design may prove to be of benefit for operation in DX contests where it's helpful to null out loud local competition.

Because of the reduced pickup of the loop compared to a full-size antenna, it may be necessary to add a preamplifier between loop and receiver to bring signals up to full strength.

the new Beam Antenna Handbook

For the past two years l've been absent from the bands, devoting every moment of my spare time to completing, with Stu, W2LX, the extensive revision of the Beam Antenna Hand-

fig. 8. QSL cards of low-frequency experimental Amateur stations in Australia.
book. It was a lengthy job; the old text was ripped apart and new text prepared. New illustrations were added. New, up-to-date antenna dimensions, based upon recent computer studies conducted on Yagi arrays were cataloged. The result, after much hard work, is a completely new edition of Beam.*

The book includes new data on HF Yagi antennas (two to five elements), element spacing, and the effect of element taper. There's new information on erecting beams and general installation data as well. VHF long Yagis are covered, together with complete design tables for the home constructor. Complete English and metric dimensions are given for all antennas.
There's helpful information on feed systems and SWR measurements. A systematic test procedure is provided to help you determine whether your beam is operating properly. The information on checking the accuracy of your SWR meter is worth the price of admission!

Now that the book is ready, perhaps I'll have time to get on the air! Or will another project come along?

[^4]

Contact us for all of your amatour radio needs. FEATURING:

ICOM, AEA, LARSEN, VAN GORDEN VIBROPLEX, NYE-VIKING, FALCON COMM, LEADING EDGE, ARFL PUBLI CATIONS, KAGLO. HAMTRONICS. PROWRITER, ELEPHANT DISKS, DEBCO, TRIONYX ~ 160

915 North Main Street Jamestown, New York 14701
 PH. (716)664-6345

Now there's a hardware magazine that's all about computers for people who like to build their own. Computer Smyth's premiere issue is now published, providing all the pleasure, economy and satisfaction of build-ityourself projects that Hams know so well.
Our authors take you inside the chips, talk about what they do and how they're controlled, and explain command options you may never have heard of before. Computer Smyth's first quarterly issue begins a series on a complete Z80 based computer on three $4 \times 61 / 2^{\prime \prime}$ boards, which lets you interface $31 / 4,5^{1 / 4}$ and $8^{\prime \prime}$ floppy disks in all densities and track configurations. John Adams' series will include a switching power supply, a PROM burner and software options for this rack-mount system.
The first issue also features an X / Y plotter you can build, an in-
expensive motorized wire-wrap tool and an RGB color to composite adapter.

During its premiere year, Computer Smyth will survey the more than two dozen computer kits now available in the US. Kit builders will report on many of them. A major series on building a 32 -bit 68000 micro begins in issue two.

Computer Smyth is published by Audio Amateur Publications, publishers of Audio Amateur and Speaker Builder magazines. All three are reader-centered, hard-ware-intensive publications whose editors believe that a magazine's primary job is satisfying the reader not consumer marketing. Our magazines are run by tech enthusiasts not MBAs looking for profits.

We guarantee that if you are unhappy with Computer Smyth for any reason, your money will be refunded upon request.

Yes, enter my subscription to Computer Smyth for one year at $\$ 15$.
Check enclosed. Make that two years at $\$ \mathbf{2 5}$. $\mathrm{H}-75$ Charge to credit card
Charge card orders: $(603) 924-9464$

Expire \qquad Signature
Computer Smyth Magazine PO Box 176, Peterborough, NH 03458

 Theי ithan Canada, odd 53.50 shipping and handine

B. G. MICRO
 P. O. Box 280298 Dallas, Texas 75228
 (214) 271-5546

Big Computer Mfg. Makes \$900,000 Goof!!

COMPUTER/DISK DRIVE SWITCHING POWER SUPPLY

ORIGINALLY DESIGNED TO RUN A Z-80

 BASED SINGLE BOARD COMPUTERWITH TWO 5-1/4 IN. DISK DRIVES AND CRT MONITOR.

BRAND NEW: UNUSED!

PRICE

ADD $\$ 1.50$ PER UNIT FOR UPS

SPECS: | | +5 VDC 5 AMPS MAX |
| ---: | :--- |
| | $\# 1+12$ VDC 2.8 AMPS MAX |
| | $\# 2+12$ VDC 2.0 AMPS MAX |
| | -12 VDC .5 AMPS MAX |

CAN EASILY BE MODIFIED TO GIVE 24V @ 1.5 AMP
SMALL SIZE: 6-1/8 x 7-3/8 In.
HIGH EFFICIENCY SWITCHER MFG. BY CAL. DC IN USA!

The poor Purchasing Agent bought about 10 times as many of these DC switchers as his company would ever use! We were told that even in 10,000 piece lots they paid over $\$ 72$ each for these multi-output switchers. When this large computer manufacturer discontinued their Z-80 Computer, guess what the Big Boss found in the back warehouse; several truckloads of unused $\$ 72.00$ power supplies. Fortunately we heard about the deal and made the surplus buy of the decade. Even though we bought a huge quantity, please order early to avoid disappointment. Please do not confuse these high quality American made power supplies with the cheap import units sold by others.

Dx FORECASTER

Garth Stonehocker, K0RYW

signal levels during the summer months

Absorption results in loss of energy from the signal as it collides with ions on its path through the D region, $60-80$ miles ($100-120 \mathrm{~km}$) above the earth. How much energy is absorbed per transit of the D region depends on the location of the sun, and is a function of cosine X, the zenith angle to the sun. Maximum absorption occurs at the subsolar point, directly under the sun; absorption decreases as the signal path moves away from the subsolar point in any direction.

On any propagation path, absorption increases with the number of crossings of the D region and also varies inversely with frequency. Therefore, in working $D X$ it pays to use the higher frequency bands and obtain consequently greater distances per hop.

In a study of several midlatitude communication links of varied lengths over the years of this 10.7 solar cycle, some general trends were noticed. The ionosphere, a balanced energy system tends to return to a "normal" level of ion density after each new solar perturbation. It is a fact that between sunspot numbers 20 and 120, signal absorption changes only by approximately 8 dB for a one-hop path 2500 km in length. The one-hop path is the easiest in which to see changes. When the signal travels three or more hops, the changes get blurred between the hops. There is more absorption with the larger number of hops, but the effect of absorption per hop is not linearly additive. Each additional hop subtracts less energy from the signal.

Absorption is inversely proportional to frequency when the angle the signal wave makes with the ionospheric layer is constant, as in vertical ionospheric sounding. However, this frequency dependency is hard to assess because as the frequency changes so does the extent of layer penetration, thereby changing the incidence angle somewhat. As a rough estimate, 10 MHz signals tend to incur twice as much signal absorption as 20 MHz signals. However the largest absorption effect occurs between night and day; it is so great it tends to mask out the measurement of the secondary causes. The midlatitude communication link paths showed $10-30 \mathrm{~dB}$ of signal loss between night and day in most seasons, with paths near the equator surpassing even these. These different absorption effects add up to give an overall signal loss of 120 dB on the average.

What can DXers do to enhance their effectiveness during summertime operations? Review the chart on the next page for the highest band available to the DX area you wish to contact. Operate on towards evening, taking advantage of its lower absorption, but before the maximum usable frequency drops off very much. Then use the graph provided in the February, 1985, column that shows take-off angle (TOA) vs. ionosphere height. Use the height chart provided, too. The lowest TOA means fewer hops and less absorption of your signal. Make sure your antenna radiates substantial energy at that low TOA in order to give you the best chance of contacting the desired DX station.

Know the current conditions (in terms of signal absorption and variabili-
ty, QSB) by listening to radio station WWV on $5,10,15 \mathrm{MHz}$ at 18 minutes after the hour. If the solar flux has just increased, absorption will be high. In addition, potential fading conditions (QSB) are associated with an A figure of greater than 15 or a K figure greater than 4. These indicate pronounced signal absorption on the higher latitude paths. These clues can help you be your own forecaster - therefore a better DX operator.

last-minute forecast

During August noise will be up and signal strength down, however spora-dic-E propagation will occur. This just means that we can expect good DX conditions on the higher frequency bands in the third and last weeks of the month while the lower bands are expected to be best the first week of the month. It's always helpful to check WWV broadcasts to confirm these conditions. For the VHF/UHF enthusiast the moon's perigee will occur on the 19th, with a full moon on the 30th. The Perseids meteor shower will occur from the 10th to 14th, with a maximum rate expected on the 11 th and 12th, with better than fifty meteors per hour. This is an excellent shower. Meteor shower activity has already been reported as heavier than usual this year.

band-by-band summary

Six-meter paths will open for a half hour to a couple of hours on some days around local noon. Sporadic-E propagation will make this short-skip path possible out to nearly 1200 miles (2000 km) per hop.

Ten and fifteen meters will have a few short-skip E_{s} openings and some longskip openings to southern areas of the world during daylight, though only during periods of high solar flux. Some transequatorial (TE) openings associated with mildly disturbed geomag-netic-ionospheric conditions may occur in the evening hours toward the end of the month.
Twenty, thirty, and forty meters will have DX from most areas of the world

HENE	$\begin{aligned} & \text { ORDERS } \\ & \text { OUOTES } \end{aligned}$	
APTAON 45.00 RS95M 138.95	FOR THE EEST DEAL IN TOWN	
	CALL THE BEST NUMBER AROUND 1-800-HAM-7373	
$\begin{array}{ll}\text { PS12A } 62.75 & \text { VS35M }\end{array}$	SPECIALS: Astron Power Supply Sale (see prices	
RS20M 98.45 RSS0M 203.25	at left); Yassu FT-980 \$1,330, FT-757GX \$745.95;	
VS20M 114.95 VSS5M 223.85	Kenwood TS-430S - Call!, TS-711A - CALL!	
RS36A...... 123.75 RM50A $\ldots \ldots \cdot 208.95$		
mianoe A1015 8Mtr 150 w Amp/Pa CALL B23A 2 Mir HT Amp/Pa. 810162 Mtr 160 W Amp/Pi OUR B3018 2Mtr $30 \ln / 180$ out C1012 1.3Mtr 120 w Amp/Pa LOW D1010N $430-450 \mathrm{Mhz} .100 \mathrm{w}$ N's. QUOTE		MUTEK LTD.
	FT203F NEW 2MIt HT FT-209RH UPS BROWN	Low Noise - High dynamic range front-end boards with: Low lose relay, RF Amp, D日M,
	FTrose 40Mnz. HT ONY YAESU	boards with: Low loes relay, RF Arp 8 -pole Xtal filter, and IF Amplifier.
	FT77 Great Moblie Rig..	ICOM IC211/251 Board
	FT757GX HF XCVR - A WInner FT980 CAT System Special OUR	ICOM IC271A Board.
KLM	Fi726R with 2 Mtr . Module	
KT34A 401. Tribander 333.05		SLNA144\% AF'Sultched Preamp, iow
KT34XA 8el. Tllbander 4788.85		max. Input, NF 1dB Gain 15dB typ 74.98
2M18LBX/220-22LBX/432-30LBX 90.95	50 Mhz Module - 7289	SLNA50s Same as above for 50 Mhz
	SSE ELECTRONICS High Performance - Low Nolse DBM converters	preamp, 250 w , max input NF ide 159.95
		GFBA144e Mast-Mounted GaAsFot preamp.
KENPRO KR500 Ele	for $50 \mathrm{Mhz}, 144 \mathrm{MHz}$ or $432 \mathrm{Mhz} \ldots . . . \quad 109.95$ SSB1298-28/144 GaAzFet converter	1 Kw PEP Max, Includes Lin. amplifier sequencer, interfaces to all rigsi. 249.85
KDK	SSB144-28 10w Transverter KIt with Double Balanced Mixer on Tx/Rx....... 199.95	CUE OEE - The Swedish Boomer "SALE"
FM2033 2Mtr 25w FM. 279.95		144-15AN 450114 MHz Yagi w/N conn. . 79.95
FM8033/4033/7033 Call!	SSB432/435-28 10w Transverter Kit with call P	PARABOLIC - UNF UNITS - LABE
henay radio	LT23a 1296 MHz 10 w X-verter, NF 1.8 dB ,	$1298 / 28$ dual conversion xverter.. 385.00
2KD-Classic 2 KW Amp. 965.00		1260/1296 single tube amp (60w) 279.96
$2002 / 2004$ A KWs 1250.0011350 .00	GaAsfet front-end, Dual Channell 650.00	1289/1296 dual tube amp (120w) 389.95
microwave modules	LSM24 OSCAR MODE L up-converter . . 279.95	1.2 meter dish k\|t 95.95
MMT144-28 2Mir X-verter 199.85		Dish teeds 1288 or 2304 85.95
MMT $220-28220 \mathrm{Mhz}$. X-verter 2800.00		2 way ant. combiners 144/432 51.85/48.95
MMT432/435-288 10 w X-verter 279.95	DX1298 GaAsFot Prgamp NF .8dB 124.96	4 way ant. combiners 144/432 $59.95 / 58.95$
MMT1298-144G 2w X-verter 349.95	SSB MAST-MOUNTED GaAsFot Preamps:	EMMS: Prices do not include shipping excapt
MMC1 44-28 2Mitr converter 59.00	MV144S-01 NI . BdB 1 Kw PEP Max. . . . 275.95	where indicated and are subjoct to change
MMC432/435-28 converter	MV432S-01 NF . 78 B 1 KW PEP Max. . . . 27.275 .45	without notice. At our discretion some COD'e
Information \& Pa. Residents	NOWNOSHE UNDER	may require a deposit. Returns are subject to a 15\% reatocking charge
	MMANM NEW MANAGEMENT!	-Continental USA only
165 Mountain Elva - Rt 309 Mountaintop, Pa. 18707	$\begin{array}{ll}\text { HOURS: Monday \& F } \\ & \text { Tues. Wed. Thurs. Sa }\end{array}$	riday 9:00arn - 8:00pm at. -9:00am- 5:00)pm

$\checkmark 163$
Custom Mailing Lists on Labels! Amateur Radio Operator NAMES
Custom lists compiled to your specifications - Geographic by ZIP and/or State

- By License Issue or Expiration Date Self stick 1×3 labels
Total List 453,000 Price: $\$ 25 /$ Thousand Buckmaster Publishing 165 Whitehall
Mineral. VA 23117 U.S A
(703) $894-5777$

WARNING SAVE YOUR LIFE OR AN INJURY

Installation and dismanll
ing of towers is dangerous
and temporary guys of sullicient
strength and size should be used
at all times when individuals are
climbing towers during all types of
installations or dismantlings. Temporary
guys should be used on the first 10 ' or tower
during arection or dismanling. Dismantling
can even be more dangerous since the condition
of the tower, guys. anchors. and/or rool in many
cases is unknown.
The dismantling of some towers shouid be done with the use of a crane in order to minimize the possibility of member. guy wire. anchor, or base failuras. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.
Get prolessional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs
ase plates. flat root mounts. hinged bases. hinged sections. etc. are not intended to support the weight of a single man. Accidents have occured because individuals assume situations are safe when they are not. before erecting or dismantiling any tower. A consultation with your local. protessional tower erector would be very inexpensive insurance.

Paid for

By the Following:
ROHN.
P.O. Box 2000

Peoria, IL 61656
during the daytime and into the evening hours almost every day. Forty meters will join this daytime group toward the end of the month because of lower signal absorption (lower lowest usable frequency) during these sunspot minimum years. During unusually high 27-day solar flux days, 40 meters may not be usable; both 40 and 30 meters may not be usable at the predawn hours after the high flux day. The DX on these bands may be either long-skip to 2500 miles (4000 km) or short skip E_{s} to 1250 miles (2000 km) per hop. The length of daylight will be decreasing noticeably at the end of the month.
Thirty, forty, eighty, and one-sixty are all good for nighttime DX, even though the background thunderstorm noise may be severe, especially on 80 and 160 meters. Propagation of signals via sporadic-E layer may occur and assist around sunset. This will be the final month of the E_{s} season.
ham radio

HAM RADIO BINDERS

Beautiful buckram bound, rich brown material with gold embossing. These binders will really dress up your collection of Ham Radio. Year stickers included.
$\square H R-B D L$
$\$ 6.95$ ea.
3 for $\$ 17.95$
Please add $\$ 2.50$ for shipping and handling, U.S. only.
HAM RADIO'S BOOKSTORE GREENVILLE, NH 03048

(C) ICOM

Options - continued
CF-1 Cooling fan for PS-15
Regular SALE
45.00

EX-310 Voice synth for 751, R-71A
39.95

SP-3 External base station speaker. Speaker/Phone patch - specity radio 49.50 BC-10A Memory back-up 8.50 EX-2 Relay box with marker. 8.50 AT-100 100w 8 -band automatic ant tuner 34.00 349.00314^{95} AH-500 500 w 9 -band automatic ant tuner 449.003999 AH-1 5 -band mobile antenna $w /$ tuner 289.00259^{95} PS-30 Systems p/s w/cord, 6-pin plug 259.95 2349s OPC Optional cord, specify 2 or 4 -pin GC-4 World clock......... (Closeout!) HF linear amplifier IC-2KL w/ps 160.15 m solid state amp VHF/UHF base multi-modes IC-551D 80 Watt 6 m transceiver. EX-106 FM option.
BC-10A Memory back-up.
\qquad
IC-27IA $25 \mathrm{w} 2 \mathrm{~m} \mathrm{FM} / \mathrm{SSB} / \mathrm{CW}$ xcyr. AG-20 Internal preamplifier*
IC-271H 100w 2 m FM/SSB/CW xcvr AG-25 Mast mounted preamplifiet* 5.50 99.95 79"s Regular SALE 1795.001299 Regular SALE 699.00 5999s 125.00112^{95} 8.50
39.00
699.00569^{95} 56.95 IC-471A 25w $430-450$ SSB/CW/FM xcvr 799.0069995 AG-1 Mast mounted preamplifier* 89.00 IC-471H 75w 430-450 SSB/CW/FM xcvr 1099.00969^{95} AG-35 Mast mounted preamplifier* 84.95

For a Limited time!

With the purchase of IC-271A/H or IC-471A/H get the matching Preamp* for just \$1.00 extra.
Common accessories for 271A/H and 471A/H PS-25 Internal power supply for (A) ... 99.00 8995 PS-35 Internal power supply for (H) $160.00144^{\text {ss }}$ PS-15 External power supply 149.00134^{95} CF-1 Cooling fan for PS-15. 45.00

EX-144 Adaptor for PS-15/CF-1

 6.50
SM-6 Desk microphone

 39.00EX-310 Voice sythesizer
39.95

TS-32 CommSpec encode/decoder. 59.95

UT-15 Encoder/decoder interface.
12.50

UT-15S UT-15S w/TS-32 installed..... 79.95
VHF/UHF mobile multi-modes
IC-290H $25 \mathrm{w} 2 \mathrm{~m} \mathrm{SSB} / \mathrm{FM} \times \mathrm{xcv}$, TP mic $549.00479{ }^{95}$
IC-490A 10w $430-440$ SSB/FM/CW xcvr 649.00579 s
VHF/UHF/1.2 GHz FM
Regular SALE
IC-27A Compact 25w 2mFM w/TTP mic 369.00 31995
IC-27H Compact 45 w 2 m FM w/TTP mic $409.00359{ }^{95}$
IC-37A Compact 25w 220 FM, TTP mic 449.00 299ss
IC-47A Compact 25w 440 FM, TTP mic 469.00 419ss
UT-16/EX-388 Voice synthesizer ... 29.95
IC-3200A $25 \mathrm{w} 2 \mathrm{~m} / 440 \mathrm{FM}$ w/TTP
UT-23 Voice synthesizer.
IC-120 IW 1.2 GHz FM transceiver.... 499.00449^{95} ML-12 10 w amplifier
6 m portable \qquad 339.0029995

IC-505 3/10w 6 m port SSB/CW xcyr 449.00 3999s $\begin{array}{lll}\text { BP-10 Internal Nicad battery pack } & 79.50 \\ \text { BP-15 AC charger } & 12.50\end{array}$ BP-15 AC charger EX-248 FM unit EX-10 Leather case SP-4 Remote speaker

Hand-held Transceivers Deluxe models Regular SALE IC-02AT for 2 m 349.00 2899s IC-04AT for $440 \mathrm{MHz} 379.00289^{95}$ Standard models Regular SALE IC-2A for $2 \mathrm{~m} . \ldots239 .50189^{95}$ IC-2AT with TTP 269.50199^{95}
IC-3AT 220 MHz , TTP 299.95 2399s
IC-4AT 440 MHz , TTP 299.95 2399s

Accessories for Deluxe models Regular BP-7 425mah/13.2V Nicad Pak - use BC-35 67.50 BP-8 $800 \mathrm{mah} / 8.4 \mathrm{~V}$ Nicad Pak-use BC-35 ... 62.50 BC-35 Drop in desk charger for all batteries 69.00 BC-60 6-position gang charger, all batts SALE 359.95 BC-16U Wall charger for BP7/BP8.
LC-11 Vinyl case
10.00

LC-14 Vinyl case for Dix using BP. $7 / 8$
17.95

LC-02AT Leather case for Dlx models w/BP. $7 / 8 \quad 39.95$
Accessories for both models Regular
BP-2 425mah/7.2V Nicad Pak - use BC35.... 39.50 BP-3 Extra Std. 250 mah/8.4V Nicad Pak 29.50
BP-4 Alkaline battery case

- 12.50

BP-5 $425 \mathrm{mah} / 10.8 \mathrm{~V}$ Nicad Pak - use BC35 49.50
CA-2 Telescoping 2 m antenna.
CA-5 $5 / 8$-wave telescoping 2 m antenna
FA-2 Extra $2 m$ flexible antenna
CP-1 Cig. lighter plug/cord for BP3 or Dlx... 18.00
9.50

DC-1 DC operation pak for standard models 17.50 LC-2AT Leather case for standard models..... 34.95
RB-1 Vinyl waterproof radio bag.
HH-SS Handheld shoulder strap.
HM-9 Speaker microphone.
HS10 Boom microphone/headset
HS-10SA Vox unit for HS 10 \&
HS-10SB PTI unit for HS 10 \& Deluxe only
HS-10SB PII unit for HS-10.
SALE 79.95
ML-1 2 m 2.3 w in/10w out amplifierSALE 79.95
SS-32M Commspec 32 -tone encoder 29.95
Shortwave receiver Regular SALE
R-71A $100 \mathrm{kHz}-30 \mathrm{Mhz}$ digital receiver $\$ 799.006594 \mathrm{~s}$ RC-11 Wireless remote controller... 59.95 499s
FL-32 500 Hz CW filter.............. 59.50
FL-63 250 Hz CW filter (1st If)..... 48.50
FL-44A SSB filter (2nd IF)........... $159.00144^{9 s}$
EX-257 FM unit......................... 38.00
EX-310 Voice synthesizer 39.95
CR-64 High stability oscillator xtal 56.00
SP-3 External speaker
56.00
49.50

CK-70 (EX-299) 12V DC option..... 9.95
MB-12 Mobile mount.
19.50

Order Toll Free - Use your Credit Card!
HOURS • Mon. thru Fri. 9-5:30; Sat. 9-3 Milwaukee WATS line: 1-800-558-0411 answered evenings until $8: 00 \mathrm{pm}$ Monday thru Thursday. Please use WATS lines for Ordering use Regular lines for other Info and Service dept.

WICKLIFFE, Ohio 44092 28940 Euclid Avenue Phone (216) 585-7388 Ohio WATS 1-800-362-0290 Outside 1-800-321-3594
——AES BRANCH STORES

ORLANDO, Fla. 32803
621 Commonwealth Ave
Phone (305) 894-3238
Fia. WATS 1-800-432-9424
Outside Florida $1-800-327-1917$

Associate Store
CHICAGO. Illinois 60630 ERICKSON COMMUNICATIONS 5456 N. Milwaukee Avenue Phone (312) 631-5181 Outside 1 1-800-621-5802
ilinois

TUBES

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2C39/7289	\$ 34.00	1182/4600A	\$500.00	ML 7815AL	\$ 60.00
2 E 26	7.95	4600A	500.00	7843	107.00
2 K 28	200.00	4624	310.00	7854	130.00
3-5002	102.00	4657	84.00	ML 7855 KAL	125.00
3-1000Z/8164	400.00	4662	100.00	7984	14.95
3B28/866A	9.50	4665	500.00	8072	84.00
$3 \mathrm{CX400U7/8961}$	255.00	4687	P.O.R.	8106	5.00
$3 \mathrm{CX1000A7/8283}$	526.00	5675	42.00	8117A	225.00
$3 \mathrm{C} \times 3000 \mathrm{~F} 1 / 8239$	567.00	5721	250.00	8121	110.00
3 CW 30000 H 7	1700.00	5768	125.00	8122	110.00
3×250043	473.00	5819	119.00	8134	470.00
$3 \times 3000 \mathrm{Fl}$	567.00	5836	232.50	8156	12.00
4-65A/8165	69.00	5837	232.50	8233	60.00
4-125A/4021	79.00	5861	140.00	8236	35.00
4-250A/5022	98.00	5867 A	185.00	8295/PL172	500.00
4-400A/8438	98.00	5868/AX9902	270.00	8458	35.00
4-400B/7527	110.00	5876/A	42.00	8462	130.00
4-400C/6775	110.00	5881/6L6	8.00	8505A	95.00
4-1000A/8166	444.00	5893	60.00	8533W	136.00
4CX250B/7203	54.00	5894/A	54.00	8560/A	75.00
$4 \mathrm{CX} 250 \mathrm{~F} / 8621$	75.00	5894B/8737	54.00	8560AS	100.00
$4 \mathrm{C} \times 250 \mathrm{~K} / 8245$	125.00	5946	395.00	8608	38.00
$4 \mathrm{C} \times 250 \mathrm{R} / 7580 \mathrm{~W}$	90.00	6083/A29909	95.00	8624	100.00
$4 \mathrm{C} \times 300 \mathrm{~A} / 8167$	170.00	6146/6146A	8.50	8637	70.00
$4 \mathrm{C} \times 350 \mathrm{~A} / 8321$	110.00	6146B/8298	10.50	8643	83.00
$4 \mathrm{CX} 350 \mathrm{~F} / 8322$	115.00	6146W/7212	17.95	8647	168.00
4CX350FJ/8904	140.00	6156	110.00	8683	95.00
$4 \mathrm{C} \times 500 \mathrm{~J} / 8809$	835.00	6159	13.85	8877	465.00
4CX1000A/8168	242.50*	6159B	23.50	8908	13.00
$4 \mathrm{C} \times 1000 \mathrm{~A} / 8168$	485.00	6161	325.00	8950	13.00
$4 \mathrm{C} \times 1500 \mathrm{~B} / 8660$	555.00	6280	42.50	8930	137.00
$4 \mathrm{C} 5000 \mathrm{~A} / 8170$	1100.00	6291	180.00	6 L 6 Metal	25.00
$4 \mathrm{C} \times 100000 / 8171$	1255.00	6293	24.00	6L6GC	5.03
$4 \mathrm{C} \times 15000 \mathrm{~A} / 8281$	1500.00	6326	P.O.R.	6CA7/EL34	5.38
4 CW 800 F	710.00	6360/A	5.75	6CL6	3.50
4032	240.00	6399	540.00	6DJ8	2.50
4E27A/5-125B	240.00	6550A	10.00	6DQ5	6.58
4PR60A	200.00	6883B/8032A/8552	10.00	6GF5	5.85
4PR60B	345.00	6897 (803	160.00	6GJ5A	6.20
4PR65A/8187	175.00	6907	79.00	6GK6	6.00
4PR1000A/8189	590.00	6922/6DJ8	5.00	6HB5	6.00
4×150A/7034	60.00	6939	22.00	6HF5	8.73
4×1500/7609	95.00	7094	250.00	6JG6A	6.28
4×2508	45.00	7117	38.50	6JM6	6.00
4 X 250 F	45.00	7203	P.O.R.	6JN6	6.00
$4 \times 500 \mathrm{~A}$	412.00	7211	100.00	6JS6C	7.25
$5 \mathrm{C} \times 1500 \mathrm{~A}$	660.00	7213	300.00*	6KN6	5.05
KT88	27.50	7214	300.00*	6KD6	8.25
416 B	45.00	7271	135.00	6LF6	7.00
416 C	62.50	7289/2039	34.00	6LQ6 G.E.	7.00
572B/T160L	49.95	7325	P.O.R.	6LQ6/6Mu6 Sylvania	9.00
592/3-200A3	211.00	7360	13.50	6ME 6	8.90
807	8.50	7377	85.00	12 AT 7	3.50
811A	15.00	7408	2.50	$12 \mathrm{AX7}$	3.00
812 A	29.00	7609	95.00	12 BY 7	5.00
813	50.00	7735	36.00	12JB6A	6.50
NOTE * = USED		NOTE P.O.R. = PR	N REQUEST		

"all parts may be new, useo, or surflus. parts may be substituted with comparable parts if we ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
For information call: 602-265-0731

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

"FILTERS"

COLLINS Mechanical Filter \#526-9724-010 MODEL F455332F

455 KHz at 3.2 KHz wide. May be other models but equivalent. May be used or new, $\$ 15.99$ ATLAS Crystal Filters
5.595-2.7/8/LSB, 5.595-2.7/LSB

8 pole 2.7 KHz wide Upper sideband. Impedence 8000 hms l5pf $\mathrm{In} / 8000 \mathrm{hms}$ Opf out. 19.99
5.595-2.7/8/U, 5.595-2.7/USB

8 pole 2.7 Khz wide Upper sideband. Impedence $8000 \mathrm{hms} 15 \mathrm{pf} \mathrm{In} / 8000 \mathrm{hms}$ Opf out. 19.99
5.595-. 500/4, 5.595-. 500/4/CW

4 pole 500 cycles wide CW. Impedance 8000hms l5pf In/8000hms Opf out. 19.99
9. OUSB/CW

6 pole 2.7 KHz wide at 6 dB . Impedance $680 \mathrm{hms} 7 \mathrm{pf} \mathrm{In} / 3000 \mathrm{mms} 8 \mathrm{pf}$ out. $\mathrm{CW}-1599 \mathrm{~Hz}$
19.99

KOKUSAI ELECTRIC CO, Mechonical Filter \#MF-455-ZL/ZU-21H
455 KHz at Center Frequency of 453.5 KC . Carrier Frequency of 455 KHz 2.36 KC Bandwidth. Upper sideband. (ZU) 19.99
Lower sideband. (ZL) 19.99
CRYSTAL FILTERS

NIFKO	FX-07800C	7.81 MHz	\$10.00
TEW	FEC-103-2	10.6935 MHz	10.00
SDK	SCH-113A	11.2735 MHz	10.00
TAMA	TF-31H250	CF 3179.3 KHz	19.99
TYCO/CD	001019880	10.7 MHz 2 pole 15 KHz bandwidth	5.00
MOTOROLA	4884863B01	11.7 MHz 2 pole 15 KHz bandwidth	5.00
PTI	5350 C	12 MHz 2 pole 15 KHz bandwidth	5.00
PII	5426C	21.4 MHz 2 pole 15 KHz bandwidth	5.00
PTI	1479	10.7 MHz 8 pole bandwidth 7.5 KHz at $3 \mathrm{~dB}, 5 \mathrm{KHz}$ at 6 dB	20.00
COATECH	A10300	45 MHz 2 pole 15 KHz bandwidth	6.00
FRC	ERXF-15700	20.6 MHz 36 KHz wide	10.00
FILTECH	2131	CF 7.825 MHz	10.00

CERAMIC FILTERS
AXEL 4F449
CEVTTE
TCF4-12D36A
$455 \mathrm{KHz}+-2 \mathrm{KHz}$ bandwidth $4-78$ at 3 dB
10.00
$455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth $4-78$ at $3 \mathrm{~dB} \quad 5.00$
$45 \mathrm{JKIz}+1 \mathrm{KHz}$ bandwidth $6 \mathrm{~dB} \mathrm{~min} 12 \mathrm{KHz}, 60 \mathrm{AB} \max 36 \mathrm{KHz} \quad 10.00$
MURATA
BFB455B
455 KHz
2.50
BFB455L $455 \mathrm{KHz} \quad 3.50$

CFM455E $\quad 455 \mathrm{KHz}+-5.5 \mathrm{KHz}$ at $3 \mathrm{~dB},+-8 \mathrm{KHz}$ at $6 \mathrm{~dB},+16 \mathrm{KHz}$ at $50 \mathrm{~dB} \quad 6.65$
CFM455D $\quad 455 \mathrm{KHz}+7 \mathrm{KHz}$ at $3 \mathrm{~dB},+-10 \mathrm{KHz}$ at $6 \mathrm{~dB},+20 \mathrm{KHz}$ at 50 dB . 6.65
CFR455E $\quad 455 \mathrm{KHz}+-5.5 \mathrm{KHz}$ at $3 \mathrm{~dB},+8 \mathrm{KHz}$ at $6 \mathrm{~dB},+-16 \mathrm{KHz}$ at $60 \mathrm{~dB} \quad 8.00$
CFU455B $\quad 455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth +15 KHz at $6 \mathrm{~dB},+30 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFV455C $\quad 455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth +12.5 KHz at $6 \mathrm{~dB},+24 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455G $\quad 455 \mathrm{KHz}+-1 \mathrm{KHz}$ bandwidth +4.5 KHz at $6 \mathrm{~dB},+10 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455H $\quad 455 \mathrm{KHz}+-1 \mathrm{KHz}$ bandwidth +-3 KIz at $6 \mathrm{~dB},+9 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455I $\quad 455 \mathrm{KHz}+-1 \mathrm{KHz}$ bandwidth +-2 KHz at $6 \mathrm{~dB},+6 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFW455D $\quad 455 \mathrm{KHz}+-10 \mathrm{KHz}$ at $6 \mathrm{~dB},+20 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFW455H $\quad 455 \mathrm{KHz}+-3 \mathrm{KHz}$ at $6 \mathrm{AB},+9 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
SFB455D $455 \mathrm{KHz} \quad 2.50$
SFID455D $455 \mathrm{KHz}+2 \mathrm{KHz}$, 3dB bandwidth $4.5 \mathrm{KHz}+1 \mathrm{KHz} \quad 5.00$
SFEl0.7MA $\quad 10.7 \mathrm{MHz} 280 \mathrm{KHz}+50 \mathrm{KHz}$ at $3 \mathrm{~dB}, 650 \mathrm{KHz}$ at $20 \mathrm{~dB} \quad 2.50$
SFE10.7MS $\quad 10,7 \mathrm{MHz} 230 \mathrm{KHz}+50 \mathrm{KHz}$ at $3 \mathrm{~dB}, 570 \mathrm{KHz}$ at $20 \mathrm{~dB} \quad 2.50$

NIPPON	IF-B4/CFU455I	10.7 MHz
	$455 \mathrm{KHz}+1 \mathrm{KHz}$	10.00

$\mathrm{IF}-\mathrm{B} 6 /$ CFU455H $455 \mathrm{KHz}+1 \mathrm{KHz} 2.90$
LF-B8 $455 \mathrm{KHz} \quad 2.90$

TOKIN CF455A/BFU455K	$455 \mathrm{KHz}+2 \mathrm{KHz}$
10.000	

MATSUSHIRA EFC-LA55K 455 KHz
SPECTRA PHYSICS INC, Model 088 HeNe LASER TUBES
PONER OUTPUT 1.GMN. BEAM DIA. 75 MM BEAM DIR. 2.7MR GKV STARTTNG VOLTAGE DC
68 K OHM IWATT BALLAST $1000 \mathrm{VDC}+100 \mathrm{VDC}$ At 3.7MA
$\$ 59.99$
ROTRON MUFFIN FANS MOdel MARK4/MU2AI
115 VAC 14WATTS 50/60CPS IMPEDENCE PROTEECTED-F 88CFM at 50CPS 7.99

M1107	\$16.75	MRF458	\$20.70	NE02160ER	\$100.00	SD1009	\$15.00
M1131	5.15	MRF464	25.30	NEO21350	5.30	SD1009-2	15.00
M1132	7.25	MRF466	18.97	NE13783	61.00	SD1012	10.00
M1134	13.40	MRF472	1.50	NE21889	43.00	SD1012-3	10.00
M9116	29.10	MRF475	3.10	NE 57835	5.70	SD1012-5	10.00
M9579	6.00	MRF476	3.16	NE64360ER-A	100.00	SD1013	10.00
M9580	7.95	MRF477	20.00	NE64480 (B)	94.00	SD1013-3	10.00
M9587	7.00	MRF479	8.05	NE 73436	2.50	SD1013-7	10.00
M9588	5.20	MRF492	23.00	NE77362ER	100.00	SDi016	15.00
M9622	5.95	MRF502	1.04	NE98260ER	100.00	SD1016-5	15.00
M9623	7.95	MRF503	6.00	PRT8637	25.00	SD1018-4	13.00
M9624	9.95	MRF504	7.00	PT3127A	5.00	SD1018-6	13.00
M9625	15.95	MRF509	5.00	PT3127B	5.00	SD1018-7	13.00
M9630	14.00	MRF511	10.69	PT3127C	20.00	SD1018-15	13.00
M9740	27.90	MRF515	2.00	PT3127D	20.00	SD1020-5	10.00
M9741	27.90	MRF517	2.00	P13127E	20.00	SD1028	15.00
M9755	16.00	MRF525	3.45	PT3190	20.00	SD1030	12.00
M9780	5.50	MRF559	1.76	Pr 3194	20.00	SD1030-2	12.00
M9827	11.00	MRF587	11.00	PT3195	20.00	SD1040	5.00
M9848	35.00	MRF605	20.00	PT3537	7.80	SD 1040-2	20.00
M9850	13.50	MRF618	25.00	PT4166E	20.00	SD1040-4	10.00
M9851	20.00	MRF626	12.00	PT4176D	25.00	SD 1040-6	5.00
M9860	8.25	MRF628	8.65	PT4186B	5.00	SD1043	12.00
M9887	2.80	MRF629	3.45	P14209	25.00	SDI043-1	10.00
M9908	6.95	MRF641	25.30	PT4209C/5645	25.00	SD1045	3.75
M9965	12.00	MRF644	27.60	PT4556	24.60	SD1049-1	2.00
MM1500	25.00	MRF646	29.90	PT4570	7.50	SD1053	4.00
MM1550	10.00	MRF648	33.35	P14577	20.00	SD1057	10.00
MM1552	50.00	MRF816	15.00	PT4590	5.00	SD1065	4.75
MM1553	50.00	MRF823	20.00	PT4612	20.00	SD1068	15.00
MM1607	8.45	MRF846	44.85	PT4628	20.00	SD1074-2	18.00
MM1614	10.00	MRF892	35.50	PT4640	20.00	SD1074-4	28.00
MM1810	15.00	MRF894	46.00	PT4642	20.00	SD1074-5	28.00
MM1810	15.00	MRF901 3 Lead	1.00	PT5632	4.70	SD1076	18.50
MM1943	1.80	MRF901 4 Lead	2.00	PT5749	25.00	SD1077	4.00
mM2608	5.00	MRF902/2N6603JAN	15.00	PT6612	25.00	SD1077-4	4.00
MM3375A	17.10	MRF902B	18.40	PT6619	20.00	SD1077-6	4.00
MM4429	10.00	MRF904	2.30	PT6708	25.00	SD1078-6	24.00
MM8000	1.15	MRF905	2.55	PT6709	25.00	SD1080-7	7.50
MM8006	2.30	MRF911	2.50	PT6720	25.00	SD1080-8	6.00
MM8011	25.00	MRF965	2.55	PT8510	15.00	SD1080-9	3.00
MPSU31	1.01	MRF966	3.55	PT8524	25.00	SD1084	8.00
MRA2023-1.5	42.50	MRF 1000 MA	32.77	PT8609	25.00	SD1087	15.00
MRF 134	10.50	MRF1004M	31.05	PT8633	25.00	SD1088	22.00
MRF136	16.00	MRF2001	41.74	PT8639	25.00	SD1088-8	22.00
MRF171	35.00	MRF2005	54.97	PT8659	25.00	SD1089-5	15.00
MRF208	11.50	MRF5176	24.00	PT8679	25.00	SD1090	15.00
MRF212	16.10	MRF8004	2.10	PT8708	20.00	SD1094	15.00
MRF221	10.00	MSC 1720-12	225.00	PT8709	20.00	SD1095	15.00
MRF223	13.00	MSC1821-3	125.00	PT8727	29.00	SD1098-1	30.00
MRF224	13.50	MSC1821-10	225.00	PT8731	25.00	SD1100	5.00
MRF227	3.45	MSC2001	30.00	PT8742	19.10	SDl 109	18.00
MRF230	2.00	MSC2010	93.00	PT8787	25.00	SD1115-2	7.50
MRF231	10.00	MSC2223-10	245.00	PT8828	25.00	SD1115-3	7.50
MRF232	12.07	MSC2302	POR	PT9700	25.00	SD1115-7	2.10
MRF237	3.15	MSC 3000	35.00	PT9702	25.00	SD1116	5.00
MRF238	13.80	MSC 3001	38.00	PT9783	16.50	SDI118	22.00
MRF239	17.25	MSC72002	POR	PT9784	32.70	SD1119	5.00
MRF245	35.65	MSC73001	POR	PT9790	56.00	SD1124	50.00
MRF247	31.00	MSC80064	35.00	PT31083	20.00	SD1132-1	15.00
MRF304	36.00	MSC80091	10.00	PT31962	20.00	SD1132-4	12.00
MRF306	50.00	MSC80099	3.00	PTX6680	20.00	SD1133	9.50
MRF313	11.15	MSC80593	POR	RE 3754	25.00	SD1133-1	10.00
MRF314	29.21	MSC80758	POR	RE 3789	25.00	SD1134-1	2,50
MRF315	28.86	MSC82001	33.00	RF35	16.00	SD1134-4	12.00
MRF316	55.43	MSC82014	33.00	RF85	17.50	SD1134-17	12.00
MRF317	63.94	MSC82020M	130.00	RF110	21.00	SD1135	10.25
MRF412	18.00	MSC82030	33.00	S50-12	23.80	SD1135-3	12.00
MRF420	20.12	MSC83001	40.00	S3006	15.00	SD1136	12,50
MRF421	25.00	MSC83003	82.00	S3007	10.00	SD1136-2	12.50
MRF422	38.00	MSC83005	70.00	S3031	22.00	SD1143-1	10.00
MRF427	17.25	MSC83026	POR	SCA3522	5.00	SD1143-3	17.00
MRF428	63.00	MSC83303	POR	SCA3523	5.00	SD1144	4.00
MRF433	12.07	MSC84900	60.00	SD345	5.00	SD1145-5	15.00
MRF449/A	12.65	MT4150	14.40	SD445	5.00	SD1146	15.00
MRF450/A	14.37	MT5126	25.00	SD1004	15.00	SD1147	15.00
MRF452/A	17.00	MT5596(2N)	99.00	SD1007	15.00	SD1188	10.00
MRF453/A	18.40	MT5768(2N)	95.00	SD1007-2	15.00	SD1189	24.00
MRF554/A	20.12	MT 8762	25.00	SD1007-4	15.00	SD1200	1.50
MRF555/A	16.00	NEO2136	2.00	SD1007-5	15.00	SD1201-2	15.00

Toll Free Number 800-528-0180 (For orders only)

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

E.F. JOHNSON ROLLER INDUCTORS

MODEL 229-0201-01 1OUH at 3AMPS MAX.

MODEL 229-0202-01
18 UH at 5 AMPS MAX.
$\$ 44.99_{\star}^{*}$
$\$ 36.99$

Standard Size

GOULD NI-CAD BATTERIES

$$
\begin{aligned}
& \text { AA size } 1.25 \mathrm{v} \text { at } 500 \mathrm{mahr} \text { new a } \$ 1.99 \\
& \text { D size } 1.25 \mathrm{v} \text { at } 4 \text { AMPHR new h } \\
& 7.49
\end{aligned}
$$

GENERAL ELECTRIC NI-CAD BATTERIES

5 v at 500mahr	new		2.99
$1951943.75 v$ at 100 mahr	new		1.99
AA size 3.75 v at 100 mahr	new		2.99
AA size pack of 1012.5 v			
at 450 mahr	used	a	5.99
Sub C Pack of 1012.5 v			
at 2.5Amphr	new		9.99

UNION CARBIDE NI-CAD BATTERIES
$1938173.75 v$ at 225 mahr new a 2.99
GLOBE GEL-CELL BATTERIES

$2 v$ at 8AMPHR GC280	new	g	5.99
$12 v$ at 20AMPHR GC12200	new	g	49.99
$12 v$ at 23AMPHR GC12300	new	q	54.99

EAGLE PICHER GEL-CELL BATTERIES
12 v at 1.5 AMPHR CF12V1.5 new d 11.99
GATES SEALED RECHARGEABLE LEAD ACID BATTERIES AND PACKS
$2 v$ at 2.5AMPHR D Cell new b 5.99
$8 v$ at 5AMPHR $4 \times$ Cell used f 14.99
$12 v$ at 2.5AMPHR 6 D Cells new $£ 24.99$
18 v at 2.5AMPHR 9 D Cells new f 29.99
GENERAL ELECTRIC SEALED REACHARABLE LEAD ACID BATTERIES AND PACKS
6 v at 2.5AMPHR 3 D Cells used e 10.00
$12 v$ at 2.5 AMPHR 6 D Cells used e 19.99
12 v at 5AMPHR $6 \times$ Cells used e 24.99
Toll Free Number 800-528-0180 (For orders only)

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item PRICES SUBJECT TO CHANGE WITHOUT NOTICE

RF Transistors (continued)

SD1202	810.00	SDI304-8	\$2.50	sp1631-2	\$15.00	SkP1427	350,00	351246112	23,00	3D1410-8	21.00	Sans36-1	41.00	SkPz417	15,00
SD1712-8	4.95	splisos	1.00	SD1452	10.00	5kF16)	40.00	301262	15.00	501617-1	18.00	5D15994	100.00	SkY 2918	15.00
Sp1212-11	4.95	Sbite)	3.00	Sb1432-4	26.00	SRFIB36	40,00	501263	15.00	SDitic	28.00	\$8156261	170.00	SEV2919	15.00
spl212-16	4.93	Sbil30s	3.00	splas ${ }^{\text {a }}$ -	20.00	skr2053-3	60.00	361263-1	15.00	SD1422-2	24.00	501544	26.00	siryotipy	50.00
Sp1214-7	5.00	s01311	1.00	501656-1	48.00	SEF2092	50,00	Sb1272	10.93	S01428	26.00	Sp156s	33.00	354006	25.00
SD1214-11	\$.00	Sbi3]	8.00	SDicil	35.00	5 SF 2167	22.00	301272-1	10.93	S51426-6064	12.00	581546111	55.00	354152	15.00
S01216	12.00	\$01319	2.50	3b1478	21.00	Skrz225	15.00	St1272-2	10,95	Sp1429-3	19.00	5 Sbsel	19,00	TA7686	13.00
S51219-4	15.00	58136-6	3.00	SD14so	53.00	\$1827264	23.00	581272-4	10.45	501429-3	16.90	$5 \mathrm{5} 1574-1$	6.45	tabssy	15.00
501219-3	15.00	Spilat-1	1,00	$5 \mathrm{tas4}$	1.50	SKFz265	100.00	581278	13.75	SD1429-5	15.00	spists	6.95	148561	13.00
581219-6	15.00	501365-1	2.50	S01486-3	1.50	SEP2281	\$.00	501278-1	13.75	$5 \mathrm{Sl430}$	12.00	3 F 4357	25.60	taes6z	15.00
SD1220	8.00	Sp1363-5	2.50	S01484-6	1.50	5672371	15.00	581278-5	13.15	SDi430-2	18.00	5K2046	5.00	T48563	15.00
\$81220-1	9.90	spilits	7. 50	SD1684-7	1.50	Sk9214\%	50.00	S81279-1	18.00	5 s 1634	28.00	52.501-54	15.00	TA8564	15.00
SD1220-9	8. 00	SD\|175-6	1.30	SD1438	22.85	Shrz3s6	18.00	\$81279-3	18.00	SDi434-5	28.00	itsot-17]	15.00	Ta8894	15.00
SD1227-8	16.00	501379	15.00	SD1488-1	28.00	5872717	16.00	581281-z	\%,00	\$01636-4	28.00	5 Sc 714	\$.00	T15189	3.53
SD1222-11	1, \%0	S01380-1	1.00	Sblisk-7	27.00	SEF2572	23.00	S01283	10.00	$5 \mathrm{SD1438}$	76.00	${ }^{\text {skrinem }}$	15,00	Tr312	2, 30
501224-10	18.00	Spilso-1	1.00	SD1488-8	26,00	SER2384	+0.00	stil283-2	10.60	581661	\$6.00	SEFJYS	50.00	T71016	5.00
S61225	18.00	SD1380-7	1.00	Sb1699-1	16.00	5872397	23.00	S01283-1	10.00	\$01442	15.00	SEFT30	36.00	TF1028	15.00
Sb1225-1	15.00	SD1403	21.00	spistim	73.00	3827741	40.00	sp1283-6	10,00	Sp1646	1.25		20.00	TEW)	5.00
801229-7	10,93	Sblues	25.00	smis20-2	14.00	S8F2767	40.00	5pl289-1	15.00	\$01646-8	3.25	S6F857k)	2.50	TxVF2201/um	450,00
SD1229-16	10.95	SD1409.	18.00	Sp1322-6	33.00	S4827678	40,00	Sb1290-6	15.00	Sp1466-9	3.25	SRP939\%	15.00	v222-2	23.00
\$D1232	6.00	581410	18.00	S01578-1	24.00	SkP2821	25.00	\$51290-7	15.00	381446	4.0)	SEPI005	50.00	W61015	20,00
501260-8	15.00	Sp1410-3	21.00	SD1528-3	34.00 18.00	SkF2822/296601 SW26s7	11.50 20.00	\$51300	1.25	\$p1450-1	28.00	5EY1018	3.00 $\mathbf{5 0} 00$	V613	5.00
5p1266-1	14.00	501410-5	21.00	Stats10-2	26.00	[512637	20.00	S01301-7	3.00	301631	13.00	sikfiol6	\$0.00		

Relays

BNC To Banana Plug Coax Cable RG-58 36 inci. or BNC to N Coax Cable RG-58 36 inch.
 POSTAGE: Minimum shipping and handling in the U.S. Canada, and Mexico is $\$ 3.00$ for ground shipments. Foreign countries is $\$ 5.40$ or 25% of order whichever is greater. Air rates are avalable at the time of yout order C.O.D's are shipped AIR ONLY
PREPAID ORDERS: Orders must be accompanied by check, bankcard number, or money order
PRICES: Prices are subject to change without notice
PURCHASE ORDERS: We accept purchase orders accompanied by a check. All others must have prior approval by management.

RESTOCK CHARGES: It parts are returned to MHz Electronics. Inc, due to customer error, the customer will oe held Responsibie lor a hees incured ant wained within 5 working days of receipt of the parcel, otherwise the ONL Y. Return authorization must be obtained within 5 working days of receipt of the parcer, otherwise the authorization number which must be obtained prior to shipping merchandise back and must appear on the outside of the package. Return authorizations can be obtained by calling (602) 265-0731. Return authorizanons will not be given out on the 800 number. All items must be properly packed and insured We will not give any credit on tems which are damaged due to improper packing
SALES TAX: ARIZONA residents must add 670 sales tax, unless a sogned ARIZONA resale tax card is curtently on file with us. All orders placed by persons outside of ARIZONA, but delivered to persons in ARIZONA are subject to the 6% sales tax
SHORTAGES OR DAMAGED MERCHANDISE: All claims lor shortages of damages must be made within 5 DAYS of receipt of parcet Claims must include a copy of our invoice, along with a return authorization number which must appear on the outside of the package The return authorization number can be obtained by caling 602) 265-0731 or sending us a postcard. Authorizations cannot be given on out 800 number All items must pe property packed and insured. We are not responsibie for any damages which may occur in shipment back package please make sute to contact the cartief so that they can come out and inspect the package before it is shipped back to us All damaged packages must be returned to ut with its original shipping material and contents Customers which do not notity us within this time period will be held responsible for the entire order as we will consider the order complete OUR B00 NUMBEA
ON (602) $265-0731$
 ORDER FORMS: New order
are available on request C.O.D.: Acceptable by telephone or mait. Payment from customer wil be by CASH ONCY. We are sory but CONFIRMING ORDERS: We would prefer that confirming orders not be sent after a telephone order has been placed. II company policy requires a contirming order, please mark "CONFIRMING ORDER" boldiy on the will be held responsible for any charges incurted, plus a $15 \% \mathrm{~b}$ restocking fee on the returned parts
CREDIT CARDS: We ave now accepting MASTERCARD, VISA, AND AMERICAN EXPRESS
DATA SHEETS: When we have data sheets in stock on devices we will supply them with the orde
DEFECTIVE MATERIALS: All claims for detective materiais must be made within 30 days after receipt of the parcel. All ciaims must include the defective material (for testing purposes), a copy of our invoice, and a return authorization number. The return authorization number can be obtained by calling (602) $265-07 \mathrm{jack}$ age could be refused and notification will not be considered completed unti this number has seen assigned. Due to manutac lurers warranties we are unable to replace or issue credit on items which have been soldered to or have been warranties. We do not assume any responsibility for shipping charges incurred

DELIVERY: Orders are usually shipped the same day they are placed of the next business day, uniess we are out or stock on an item. The customer will be nothed by poss card the weight of the package Test Equip Our normal shipping method is is freight collect, unless prior arrangements have been made and approved

OREICN ORDERS: Alloreign orders must be prepaid win Casher's check, Money Order, or bank ut in U.S. Funds only. We are sorry but C OD is not available to foreign countries and letters of credit are inacceprable torms of payment

HOURS: Monday thru Friday 8:30 a m. to 5.00 pm . Saturdays $8: 30 \mathrm{a} . \mathrm{m}$. $104: 00 \mathrm{p} . \mathrm{m}$
INSURANCE: Please include 258 for each additional $\$ 100.00$ over $\$ 100.00$ UPS only. All insured packages NSURANCE: Please incluoe 2s it States insured packages are shipped only by UPS

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

For information call: 602-265-0731
Toll Free Number
800-528-0180 (For orders only)

3802 North 27th Ave., Phoenix, AZ 85017

$900-\mathrm{MHz}$ scanner converter

Hamtronics, Inc. has announced a new converter for scanner radios to cover the $900-\mathrm{MHz}$ land mobile band. An adaptation of the very *popular CVR-806, which covers the $806-896 \mathrm{MHz}$ band, the new $900-\mathrm{MHz}$ converter allows coverage of new services now being assigned or proposed for the $880-960 \mathrm{MHz}$ range, including additional land mobile services, such as police and fire departments, government and non-government fixed stations, industrial, scientific, and medical services, and the proposed $902-928 \mathrm{MHz}$ Amateur band. Also included are proposed new cellular telephone and paging services and existing and new broadcast studio-transmitter links. The price of the CVR-900 is $\$ 88$ plus $\$ 3$ for shipping and handling. Other converters are available for the $72.76,135-144,240-270,400-420$, and $806-896 \mathrm{MHz}$ bands at the same price.

For a complete catalog of Hamtronics* products, send $\$ 1$ to Hamtronics, Inc., 65-F Moul Road, Hilton, New York, 14468-9535. (For over seas mailing, please send $\$ 2$ or 4 IRCs.)

UHF cavity amplifiers

Varian/EIMAC has introduced six new UHF cavity power amplifiers designed for FM, CW, pulse, or single-sideband linear service in the 280 to 530 MHz frequency range.

Using the EIMAC 3CX800A7 high- μ power triode, the cavity amplifiers eliminate equipment design complications and extra power supplies associated with UHF tetrode cavities, yet provide comparable stage gain. Power gain in FM or CW service for all cavities is on the order of 11 dB with efficiency ratings in excess of 55 percent.

In addition to being more efficient, the new cavity amplifiers offer reliability in the targeted bands because of the comparatively simple design.

The cavities provide approximately 450 watts power output in CW and FM service over the following ranges: CV-2401, 390 to 450 MHz ; CV-2402, 375 to 420 MHz ; CV-2403, 280 to 300 MHz ; CV-2404, 470 to 530 MHz ; CV-2405, 330 to 370 MHz ; and CV-2406, 450 to 470 MHz .

Standard 50-ohm Type N input and output RF connectors are used for all cavities. Silver-plated components are used to ensure the best performance and efficiency.

The cavities are forced-air cooled and de-
signed for mounting to a customer's 19 -inch panel. Each has a net weight of about 13 pounds. All are 14 inches wide, 10 inches deep, and range in height from 6.2 to 9.3 inches.

For additional information or literature, contact Varian/EIMAC, 301 Industrial Way, San Carlos, California 94070.
Circle 1308 on Reader Service Card.

packet communicator

Kantronics has announced a new product for Amateurs using computers in the shack: the Kantronics Packet Communicator.

Interest in packet radio has grown in recent years with volunteer Amateur groups doing research and testing of the new mode. With the ARRL adoption of the AX. 25 protocol as the Amateur standard, packet radio became a viable form of data exchange. Thousands of Amateurs have proven the new mode reliable using a hardware and software program devised by the Tuscon Area Packet Radio group (TAPR).

To better utilize the new packet technology Kantronics has designed a new hardware format for processing the packet protocol. By using an internal microprocessor to handle the protocol, and integrated circuits for signal processing, the Kantronics Packet Communicator becomes the most compact and inexpensive finished packet unit available today.
Data is transmitted between the Kantronics Packet Communicator and the computer using a Series RS232 or TTL port. Baud rates of 300, 1200 , and 9600 can be used. Any terminal or communications software program can be used to set up the computer to communicate with the Packet Communicator. Special Packet Terminal (PAC-Term ${ }^{\text {M }}$) programs for many popular personal computers will be available soon from Kantronics.

System compatability, the ability to exchange data with existing Packet Terminal Node Controllers, has been achieved with the Kantronics Packet Communicator by using the popular TAPR software.

Almost all of the commands and operation procedures used by the TAPR group are used with the Kantronics Packet Communicator. Both
the ARRL standard AX. 25 and Vancouver protocols are incorporated in the unit. The Kantronics Packet Communicator supports baud rates of $300,400,600$, and 1200 , but the unit does not support full duplex operation.

An added feature of the Kantronics Packet Communicator is the ability to select either Bell 103 or 202 tones for 300 baud operation. This will allow the operator to switch to the lower tone set, improving performance at slower speeds on the HF bands. This feature makes the Kantronics Packet Communicator an excellent choice for gateway use on the HF bands. The suggested retail price is $\$ 389.95$.

For further information, contact your local Kantronics dealer, or Kantronics, 1202 East 23rd Street, Lawrence, Kansas 66046.

Circle 1307 on Reader Service Card.

headset/boom microphone for TR-720

Communications Specialists has announced the availability of a high quality headset/boom microphone that plugs directly into the TR-720 handheld airband transceiver. The CS-65 HEAD-

SET/MIC was developed to permit improved transmission and reception with the TR-720 in noisy environments. This new accessory is light (12 ounces) and features cushioned, noise-attenuating ear pads that can be adjusted for a comfortable fit. A flexible boom supports and electret noise-cancelling microphone. Supplied with a 5-foot cable to connect to the radio, the unit comes with a push-to-talk switch attached. The CS-65 HEADSET/MIC lists for $\$ 69.95$.

For further information, contact Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92665.
Circle 1306 on Reader Service Card.

SALES AND SERVICE AT PRICES YOU CAN AFFORD! CALL OUR WATS LINE FOR LOW LOW PRICES! SPECIAL OF THE MONTH: LARSEN MAG MOUNT 2M y PKG-\$36.95

VISA/MASTER CARD FREE SHIPPING ON MOST RIGS FOR CASH!

S.A.S.E. FOR OUR
"BENCH-TESTED"
MON-FRI 9 AM - 6 PM CENTRAL TIME USED EQUIPMENT LISTING

4124 West Broadway, Robbinsdale, MN 55422 (Mpls./St. Paul)

TWO NEW ONES FROM ARCSOFT

QUICK-N-EASY ELECTRONICS PROJECTS

by Bob Green
Here's a neat book to help while away a rainy afternoon. Contains 40 quick and easy to build projects using commonly found electronic components. Learn-by-doing format is a boon to beginners while advanced builders will enjoy the range of projects included. Projects include: CPO, high VSWR alarm, three battery charger, body bug and sun spotter to name just a few. Also includes list of mail order and local parts supplier suggestions. 1st editioncc 1985 96 pages
AR-QN
Softbound \$7.95
EASY-TO-BUILD ELECTRONICS PROJECTS by Bob Green
40 more electronics projects to work on! Complete plans and schematics and easy-tolocate parts means that you can usually complete these projects in an evening. Projects include: Ad silencer, Mugger bugger, radio-tester, Mugger bugger, radio-tester,
fuse telitale plus 36 more. More practice for the beginner and more fun for the advanced builder. Ist edition (c) 198596 pages
AR-ET

Please onclose $\$ 3.50$ to cover shipping and handiling

BOOKSTORE

All you need to know about land mobile crystals is our phone number: 800-526-3935

 Fast Delivery Lifetime Guarantee TCXO's, etc.

201 Blackford Avenue, Middlesex, N.J. 08846
(In N.J. call) 201-356-7787
"We are small enough to care, yet big enough to do something about it!"

Invitation to Authors

ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

The Problem Solver. . .

The RF Wattmeter Model 81000 -A from Coaxial Dynamics, Inc. does more than provide accurate if measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assure optimum equipment performance.
The 81000-AK Watkit features this easy-t0-read BF
Wattmeter (pictured here), with its optional carrying case and an array of elements and
 accessories. Coaxial Dynamics elements can be purchased separately for use in other manutacturer's Wattmeters. For more information on the 81000-A Watimeter or any of the complate line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

the
 HAM STATION

220 N. FULTON AVENUE P.O. BOX 4405

EVANSVILLE, INDIANA 47710
Large stock of new equipment at discount prices

Orders 1-800-523-7731
Indiana (812) 422-0231 Info \& Service (812) 422-0252

CALL FOR PRICES ON

 EQUIPMENT FOR OSCAR 10 PRICES AND AVAILABILTIY SUBJECT TO CHANGE. FREIGHT FOB EVANSVILLE.

New 561 Corsair List $\$ 1354.00$ Call for Discount Price
sw
$370-15$ 80-10m Foided Dipole
AT.110 5 Band Trap Dipole AT-55 4 Band Trap Dipole Various A
Buttemut
F38 Butartly Compact Beam 314500
7600
50 HF2V $80-40 \mathrm{~m}$ Vertical TBR-160-S 160 M Resonator

Cuaheraft A4 Tribander

A3 Tribander
A147.112M 11 EL
A4
A 111250 MHZ
215WB 2M JR Boome 230WB Stacked 215 /s 32.19 Boomer 19 EL 2 M AOP. 1 OSCAR PKGE
Ringo Rangers 2M, $6 \mathrm{M}, 220,450$

DAWA

CN-520 $18-80$ MHZ MIt
CN $20818150 ~ M H Z ~ M I I, ~$
CN- 2208 1.-150 MHZ MI
CN- 630 140-450 MHZ MII CN-410M 35-150 MHZ Mt CS-201 2 Pos Switch
CS-401 4 Pos Switch

ENCOMM
NEW FM-240 25W FM XCV
HAL
HELL
Products in Stock

G-7.144 MHZ Vertical	5119.95
G-6. 14482 M Vertical	8595
G-440 MHZ Vertical	109.95
	129.95

$\begin{array}{ll}\text { HYOALN } & \\ \text { TH7DXS TEL Tribander } & \$ 35.00 \\ \text { Explorer } 143 \text { 3EL Tribander } & 290.95\end{array}$ Explorer 14 3EL Thitender OK710 30/40 MII Kit BHTS B0-10m Vertica
$\$ 179.95$
119.95
18500

IC. 3200 Call for Spetial Price

hygain

18AVTNBS $80-10 \mathrm{M}$ Vertical
14AVOWBS $40-10 M$ Vertical
14ACal 2148S-14EL $2 M$ Beam V2, V3, V4 $2 \mathrm{M}, 220,440$ Vertical
2872 Mty

$\underset{751}{1601}$

751 Top of the Line
735 New Fantasic $X_{c y r} \quad \$ 117900$
251 .
735 Now Fantastic \times 271ANH 2M All Mode
$471 \mathrm{~A} / \mathrm{H}^{430-450 ~ M H Z ~ A l l ~ M o d e ~}$ 27AMH MII Mobiles 37A 220 MHZ Mobile 47 A 440 MHZ Mobiles 3200 Dual Band 144 s 440 2AT2 MHHT

$$
\begin{aligned}
& \text { 2AT } 2 \text { MHI HT T } \\
& \text { MT/4AT 2200440 MHZ HT, } \\
& \text { Huge inventory of Accessones \& Radios }
\end{aligned}
$$ 3AT/4AT 2ZO/440 MHZ HT Ts \qquad

$$
\begin{aligned}
& \text { KANTRONUCS } \\
& \text { Packet Commu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pecket Communicator } \\
& \text { UTU Universal Termin }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Packet Communicator } \\
& \text { UTU Universal Terminal Unit } \\
& \text { Intertace II Daluise intertace }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Intertace II Deluxe interface } \\
& \text { Chalienger economical intertac }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Chalienger economical interface } \\
& \text { Software in Stock-CALL }
\end{aligned}
$$

KLM

KLM
$2 \mathrm{M}-14 \mathrm{C} 2 \mathrm{C}$ Circular Ant. w/CS-2
2 M .22 C 2 M Circular Ant. W/CS-2
2M-22C 2 MC Crirculat An
$435-18 \mathrm{C}$ Circular Ant.
435-18C Circular Ant.
435-40CX Circiular Ant. w/CS-2 CS-2 Circularity Switch 2M-16LBX 2 MHI Ya
432-30LBX Yagi
LARSEN $\begin{array}{lr}\text { NLA. } 1502220 / 450 \mathrm{Mag} \text { Mnt } & \$ 3995 \text { as } \\ \text { NLA } 2770 \text { Dual Band Mag. Mnt Ant. } & 5995\end{array}$ MFJ
1229 interface/tree Soflware 1224 interface:tree Sofmare 1228 interface:free Sormare 999.3 KW Rolior inductor tuner 999 C 300 W Tuner w/D Load
910300 W full feature tuner 910300 W fulicature tune
204 Antenna Bridge. 422 Keyef/Bencher Comb
 "Call for Discount Price." MAACE

81016 10/160W-Preamp B3016 30/160W-Preamp B234 2J3OW-Preamp D1010N 10/100W 430-450 MHZ	$\$ 249.95$ 204.95 89.95 289.95
NYE MB-V-A The Ullimate Tuner	5499.95
shupe 444D HiLO Z Desk Mic	\$55.00
TE	
NEW Corsait-Very Nice	CALL
Century 22 CW Xevt	5349.95
2510 Satelite Station	409.95
Trian-Your Last Amplitier	2175.00
TOKYO HYPOWER	
HL30V 350W Amp	56295
HL35V 3/30 Amp w/Gastel	7500
HLI 160 V 3/10-160W Amp	295.95
HLl 160 V 25 25-160W Amp	259.95
HL-20U 430-49 MHZ 320W Amp	105.95
HL $120 \mathrm{U} 430-449 \mathrm{MHZ} 10 / 100 \mathrm{~W}$ Amp	319.95
HC-2000 2 kW Tune	29595
HC 400L Tuner w/Dual Neesile Mtr	175.95
hra 2 2Mtr Gastet Preamp	119.95
HRA 770 CM Gastet Preamp	11995
YaEsU	
FT. 9800 Deluxe Xovr	\$1425.00
FT. 757 Gen Cov Xerr	CALL
FT-757H.O.P.S. witan	175.00
FT.747AT Autotuner	235.00
FT-726R Mult Band Xevr	CALL
FT. 270 A 45W 2Mtr	375.00
FT-2700RH $2 \mathrm{Mtr} / 440 \mathrm{MHZ}$	489.95
FT. 209 AH 5 W 2MIt H.T.	299.95
FRG-8800 Hf Communications Rovr	499.95
FRG 0600 30-060MHZ Scanning Acv Large Stock of Accassorien	CALL
WELz	
Mirs, Antennas, Duplexers in Stock	
nOTATORS	
Alliance HD-73	\$115.00
Aliance U-110	49.95
Telex CD-45	139.95
Telex Ham 4	239.95
Telex T2X	209.95
Ken Pro KR500	155.05

products

touchtone decoder kit

Engineering Consulting has announced the model TSD 4-digit sequential touchtone (DTMF) decoder for mobile and base station use. Each board can have a unique 4 -digit user-programmable access code. The board will install in most VHF/UHF and HF gear, allowing alarm or mute functions to be implemented. Typical applications inelude muting the audio circuit until a valid 4 -digit code is received. An alarm can be sounded upon receipt of the access code to alert the operator that someone is calling on the channel, without having to listen for your call sign.

The model TSD decoder is easy to install in any 12 -volt radio. Speaker audio or low-level audio may be used to listen to the tones. An open collector transistor provides the output control to switch a small relay or alarm device. Either momentary or latching control is provided with jumper selection. Upon receipt of the access code a latch or momentary pulse is provided. Send the code again and the latch will reset. The TSD is available wired and tested from Engineering Consulting for $\$ 59.95$.

For further information, contact Engineering Consulting. 583 Candlewood Street, Brea, California 92621.

Circle 1305 on Reader Service Card.

super CW

Super-CW, a CW audio processor from Hildreth Engineering, includes an 8th order Butterworth cascade of staggered pairs to provide excellent skirt rejection without excessive response to impuise noise. The $3 \cdot \mathrm{~dB}$ passband is from 700 to 800 Hz with a 3 to 30 dB shape factor of less than 3.

More than just a filter, the unit features an S / N BOOST function, which is driven by the pre-filter, to provide a signal-to-noise ratio enhancement of over 10 dB as compared with the linear filter position. It does this for signals that are well below the noise in a typical 3 kHz audio band width. This boost circuitry uses compound-complex filter/limiter/filter elements with added active circuits (patent applied for) that creates S/N enhancement for CW - or any pulse-codemodulation (PCM) signal - analogous with that enjoyed by FM communications systems. A sec ond and very important benefit is ear protection. When in the S/N BOOST position, the sudden onset of strong signals or noise pulses just can't happen. You get a clean, distortion-free signal at a sound pressure level uniquely determined by the AF GAIN control.

A 2-watt power amplifier with a controlled

voltage gain of 25 is included to allow a reduction in receiver RF gain, which reduces the tendency toward non-linear disturbances in your receiver's IF and/or product detector when listening to a weak signal under the condition of strong signal QRM outside of the 700 to 800 Hz passband. The unit receives its input from your receiver's speaker output. Power supply requirements are 12 to 15 VDC at a nominal 350 mA peak. The unit will drive a 4 to 8 ohm speaker.

For more information, contact Hildreth Engineering Corporation, P.O. Box 60003, Sunnyvale, California 94088.

Circle /303 on Reader Service Card.

filters for TS-940S

Matched sets of filters for the Kenwood TS.940S are available from International Radio, inc. The SSB-2.1 kHz set consists of one 8.83 $\mathrm{MHz}, 2.1 \mathrm{kHz}$ drop-in, 8 -pole crystal filter and one 2.1 kHz 455 kHz 8 -pole crystal filter (wired $\mathrm{in})$. This matched set will provide an overall system selectivity of 2.0 kHz at 6 dB and 2.5 kHz at 60 dB . The shape factor is 1.25 .

The CW-400 Hz matched set consists of one drop-in 8.8 MHz 400 Hz 8 -pole crystal filter and one drop-in 455 kHz filter, for system selectivity of 400 Hz at 6 dB and 700 Hz or less at 60 dB . The shape factor is 1.75 or less.

Sets are priced at $\$ 139.00$ each, or $\$ 260$ for both. All crystal filters are guaranteed for two years. Quantity discounts are available
For further information, contact International Radio Inc., 364 Kilpatrick Avenue, Port St. Lucie, Florida 33452 .

Circle /304 on Reader Service Card.

solar breakthrough

The ENCON Corporation has introduced the first commercially available amorphous (thin film) photovoltaic to the Amateur Radio marketplace. Genesis, ${ }^{\text {'M }}$ a state-of-the-art 5 -watt PV module, represents a breakthrough in solar cell technology. Typical applications for the new modules. which may be wired together for increased power, include battery maintenance on ham equipment, recreational vehicles, and boats. The modules can produce enough power for telecommunication from QRP stations, security equipment, and some home lighting.

Manufactured by ARCO Solar, the Genesis is designed for easy use. Convenient front mount
[-2
 Satellite Receiving Systems SPS San Pierre, IN (219) 828-7255 - 828-3091 $\checkmark 170$

AUTHORIZED KENWOOD I-COM RADIO DEALER

II L HEASTER INC, 203 Buctiannon Pac. Clarktourg. W VA 26301 Claksturg Phone (304) 524.5485 or W Va follfiee 1.800 3523177
 Fongs Phone (904) 673.4066
We self all brants of amatev radien anpulhers. antevas fowers eth Cal us for s quotaion for pour needs we guarantee to save pour money Haton wide holl free ianswers 24 hrs i 1 - $000-824$-788s operator 885 wher using the nation mide tol tree telephone you must lever a meswape tor 3 call back trons ine Preawe alow 35 san tor a rethin cat than you'

Electronic Repair Center
Servicing
Amateur
Commercial Radio

The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig too old or new for us.

Wesivilionvcenvice.

4033 Brownsville Road Trevose, Pa. 19047 215-357-1400

High Performance
 vhf/uhf preamps

Every preamplifier is precision aligned on ARR's Hewlett Packard HP8970A/HP346A state-ot-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are if switched (for use with transcelvers) and handie 25 watts transmifter power. Mount Inline preamplifiers between fransceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers avallable U.S. and Canade. Connecticut residents add 7-1/2\% sales tax. C.O.D. orders add \$2. Air mail to forelgn countries add 10%. Order your ARR Rx only or Inline preamplifier today and start hearing like never before!

Box 1242 • Burlington, CT 06013 - 203 582-9409

- 172

GUS BROWNING, W4BPD's DX'ERS MAGAZINE

For over 17 years, Gus's DX'ERS MAGAZINE has brought thousands of DX'ERS worldwide, timely, pertinent information on when and where to find those elusive DX stations.
Gus's personable, chatty writing styie and his years of DX operating experience makes the DX'ERS MAGAZINE a unique publication. One year $\$ 1400$ USA, Canada \& Mexico.

TENNA HITCH by DC SALES
For Class \#1 \& \#2 hitches
Adapts your existing car trailer hitch for any HF Antenna No holes in your car Complete $\$ 29.95$ Plus $\$ 5$ postage $\&$ handing
Contact your favorite dealer or:

> चाsA DC SALES
> 1602 Chestnut Ridge Rd.
> Kingwood, TX 77339 (713) 358-0051

Dealer inquiries invited

WARC for FT-101/901

WELCOME TO 12 METERS!
Add all three WARC Bands to your FT-101

- Increases Resale Value of your Rig.
- Installs easily. detailed instructions.
- Includes all crystals, relays, wire, etc
- Tested, fool-proof design for all but 'ZD

FT-101 3-band WARC Kit $\$ 25$
FT- 901 30M Only WARC Kit \qquad
Shipping: $\$ 3$. Air $\$ 5$ (US \& Canada). $\$ 10$ Elsewhere Order by mail or phone VISAMMC or COD Accepted
GO FOX TANGO - TO BE SURE!
FOX TANGO CORPORATION
Box 15944 H, W. Palm Beach, FL 33416 (305) 683-9587
$\vee 175$

STATION MANAGER/ADVANCED

A General Purpose Logging Program
Designed for the IBM ${ }^{*}$ PC. ${ }^{*}$ XT, * enhanced PC ir * Menu driven; prompts for easy use; full color displays; multiple logs (each up to 1,000 entries with user editing). several reporting methods including one by partial callsign.
$\$ 79.00$ includes: 90 pg . User's Guide \& Diskette (source code included)
$\mathbf{\$ 2 0 . 0 0}$ - User's Guide only (may be applied to full purchase price)
Ohio residents include sales tax

OMEGA CONCEPTS

Protessional software for the Radio Amateur ${ }^{\text {ru }}$
$\begin{array}{llll}\text { P.0. Box } 615 & \text { T.L. Jones (KB80A) } \\ \text { Troy. } 0 \mathrm{OH} 45373 & & \text { Author }\end{array}$
IBM is a registered trademark of International Business Machune Corp

TNEW products

ing holes and a long lead wire make the Genesis module easy to install and use. Modules bolt directly to almost any secure surface and produce power even in low or diffused light. Power specifications for the Genesis include: voltage at maximum power, 14.5 VDC ; current at maximum power, 0.35 amperes; open-circuit voltage, 20.8 VDC ; and short-circuit current, $0.435 \mathrm{am}-$ peres. Carrying a one-year warranty and retailing for under $\$ 100$, its advanced technology provides an affordable solar alternative accessible to everyone.

For more information, contact ENCON Corporation, 27600 Schoolcraft, Livonia, Michigan 48150.

Circle 1302 on Reader Service Card.

pico hook adapter with wire/cable plug-on capability

Designed specifically for narrow test contact access, the E-Z HOOK P-25 "pico Hook" adapter features an ultra-thin blade and housing to allow connector stacking and ease of use, while allowing the flexibility of independent wire and cable assembly.

Incorporated into the design is a one-piece, gold-plated beryllium copper conductor and hook for assured signal accuracy, qualified to MIL-G-45204. The P-25 permits connection to J. 025 -inch square or 0.030 -inch round push-on umpers and is designed for connection directly to a single leg of a DIP or other components which have a maximum diameter of 0.025 inch.
Lightweight and Finger-eze Hypo Action permit hook-up to delicate wires where weight and leverage may otherwise damage components. The barrier on the tip prevents shorting between DIP legs. A durable plastic body and plunger, and stainless steel compression spring provide approximately eight ounces of contact pressure.
For details, contact E-Z hook, Inc., P. O. Box 450, Arcadia, California 91006-0450.
Circle 1301 on Reader Service Card.

MICROWAVE EQUIPMENT

RMLA - 2.3
Single Stage, Low Noise Gas Fet Amplifier $\$ 60.00$
Optimum Transistor Norse Figure less than 5 dB , Associated Gain Greater Than 15 dB at 2.3 GHz Source/Load must be 50 ± 10 ohm Non-Reactive SMA Connectors Requires ± 5 VDC Power with -5 VDC present when +5 VDC applied. Power Supply and Sequencing is not supplied. Zener Protection Unenclosed on $2^{\prime \prime} \times 2^{\prime \prime}$ PC Board
Write for Price/Delivery for any frequency from 1 to 6 GHz Aiso VCO's. Signal Generators, Detectors. Attenuators, Filters, Mixers, and Converters

Price includes Shipping and Insurance when paid by check or money order Charge or COD orders, FO.B. Brookfield. MO
ROENSCH MICROWAVE R.R. 1, Box 156B. BROOKFIELD, MISSOURI $64628 \sim 178$

NOW WITH COMPUTER DISKS

COMPUTER PROGRAMS FOR THE RADIO AMATEUR

by Wayne Overbeck, N6NB, and Jim Steffen, KC6A

Here's the first source book of computer programs for the Radio Amateur. Besides covering computer basics, this book gives you programs that will help you log. determine sunrise/sunset times, track the Moon's path across the sky, use Greyline propagation and set up record systems for WAS, DXCC and VUCC. or any other award. You can either buy the book alone or you can buy the book with the programs already on disk. Take full advantage of your computer with this well written source book. ©1984, 1st edition.
327 pages.

Program Listing

Data Base Mgmt.
Logs, Awards Data Base, Gridlocator
Latitude/Longitude Programs
Data File, Beamheadings. DX Display, Sunrise Ct Greyline, DX Checker

Contest and Duping

Dupechecker, General Contest Logger,
Field Day Logger, Sweepstakes Logger, Log Prir Antenna Programs
Antenna Scaler, Matching Evaluator. Vertical Pat Plotter
EME
EME System Calculator, Sky Locator, Moontrackt
\square HA-0657 Softbound \$16.9
\square HA-0657 with program disk
$\$ 29.9$
specity computer (see list below)
\square Program disk alone
\$19.9
Programs available for: Apple II (DOS and CP/M), IBM (DOS). TRS-80 Model I and Model III and Commodore C-64. Please mark your order with tif program disk you want

By
Chip Lohman

NN4U

aMATEUR RADIO COMPUTER SOFTWARE

ANTENNA DESIGN

This self-prompting program covers dipoles, Yagis, long wires, rhombics, quads, loops, verticals and other antennas. You simply enter the frequency you are designing an antenna for, the antenna you want to make, and the com puter will give you all the initial design specifications you need. The results can be stored on disk for permanent retention.
CHD-AD (For C-64)
$\$ 9.95$

CONTEST LOG

This disk contains four different contest programs; ARRL Sweepstakes, Field Day, Universal WW Contest log, plus a dupe checking routine. Each program is designed for real time use. It automatically enters date, time, band and serial number for each contact. A 24 -hour clock is displayed at the top of the VDT screen. When the contest is over, the program will print your results listing all duped and scored contacts in serial sequence with all the necessary information as well as completed score at the bottom of the page
-HD-CL (For C-64)
\$24.95

SUPER LOG

Super log gives you all the advantages of a computerized data base without significantly changing the traditional log format. For contesters, Super Log can be configured to either manually or automatically enter serial number as well as time of contact. Make an error and you can easily go back and edit the entry. Super Log also allows you to print out either selected contents or the whole log. Will print QSL.s. Easy to modify
पHD-SL (For C-64)
\$19.95

PROPAGATION CHART

Invaluable addition to any Hamshack. The Propagation Chart allows you to determine the maximum usable frequency (MUF) and the optimum frequency (FOT) between your QTH and any spot on the globe. You can get either a screen display, a printed tabular list over several days, or a printed graph of MUF and FOT. You also get automatic beam headings and distance to the DX station. Covers 160-10 meters and the new WARC bands.
\square HD-PC (For C-64)
\$16.95

STAR 1.0
 design program

 by Randall RheaSTAR, S-parameter Two part Analysis Routine, is a profes sional engineering program designed to help analyze elec-
tronic circuits. It is particularly helpful in frequency domain analysis of RF and microwave circuits. To use STAR, you input circuit information by component; inductors, resistors, capacitors, transformers, transmission lines, two port data and several two port manipulations. STAR will then give you S-parameter data for each requested frequency in tabular or plot form. You can also use STAR to optimize component values for maximum circuit performance. This program is definitely not for electronic beginners. Engineers and serious hams, however, will find STAR to be an invaluable design tool
RR-IBM program for IBM

RR-C-64 program for Commodore C-64 $\mathbf{\$ 9 9}$
RR-AP
program for Apple II
$\$ 89$
RR-KP
program for KayPro

COMPUTERIZED DX EDGE

Generate your own Greyline display.

NHEW

 Xantek has adapted their best selling DX Edge to the computer world and it comes at a very reasonable price. This computerized operating aid brings into your ham shack the ability to know and predict when and where DX is going to appear. When you are using the program, the computer will automatically update the information as the sun progresses across the face of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 CO zones. Disk and documentation are just $\$ 34.95$. This is something you've GOT to have! 1985\square XN-C64 (For Commodore C-64)
$\$ 34.95$

ATMFN
 RF NOTES
 by John Simmons, W6MDI

Here's an easy way to get answers for often asked electronics questions. RF NOTES contains programs written by broadcast engineers that answer $d B$ conversion, to convert voltage, current or power levels to dB ; dBm conversions, converts voltages of power levels to dBm and dBm to voltage or power; VSWR calculations, calculates VSWR and return loss when both reflected and incident powers are known; Filter design, 14 different filter configurations including schematics (6 low pass, 4 high pass. 2 band pass and 2 band elimination circuits); Basic Microstrip and basic strip line design; and resonant circuits, design parallel and series resonant circuits, PI, capactive impedance divider and inductive impedence divider. This disk is an invaluable reference for all Radio Amateurs.
E-RF (IBM PC only)
$\$ 59.95$

CONTENDER II LOGGING DATABASE
 (Commodore C-64)

This Commodore C-64 program will meet just about every logging need you can imagine. It can be used as a contest \log. general \log or dupe checker and can be used for all band WAS, WAZ or DXCC. The storage disk holds up to 2,000 exchanges and can be edited and updated simply and easily. Each entry contains callsign, signal reports,
automatic or manually entered time and date, band and mode as well as name and OTH. Contender will also pri OSL's, mail labels and contest dupe sheets. The Conten USA-CA (three disks) is a Worked All County data base that saves time and hassle and a tremendous amount ol paperwork.
CT-C
$\$ 34$.
Basic Contender (C-64) 1 disk
CT-CUSA
$\$ 49$.
Contender Plus USA-CA (C-64) 3 disks

RTTY MAILBOX MSO
 for Vic 20 and C-64 Computers

Here's a super user friendly sottware package that turns Commodore home computer into a powertul, easy-to-ust message handling system. Messages can be stored, reat or deleted by either incoming RTIY signals or by using computer's keyboaid. Each message is listed in a direct by file name, along with date and time of message initia tion. The Basic/Assembly language software combines hi speed with user friendly features and fully controls your transmitter and receiver with automatic identification, an optional special message and automatic transmission of date and time during MSO use. You can also use this pt gram to operate direct RTTY and 60, 67, 75 or 100 wpr Baudot or 110 baud ASCII. Vic 20 needs 24 k of memory use this program
VC-CP Use with AEA CP1 interface \& equiv. $\$ 79$.
VC-MF Use with MFJ interface \& equiv. \$79.
VC-KT Use with Kantronics interface \& equiv. \$89.

AMPRO SOFTWARE
 FOR THE IBM PC

Edited by E.B. Rough, KB3GX

Programming by Ron Nord, N3AKP
These four programs have been written with the Active Amateur in mind and are designed to greatty simplify record keeping chores. You simple enter basic QSO data; call, prefix, country, state, or zone, date, RST and mode The program then adds the contact to the disk data base You can review your current status of stations worked, confirmed or verified at a glance. You can also print up
"wish list" to give to your friends who are helping you find those missing stations. The DXCC and 5 band DXCC lists are current through January 1, 1985 and can be eas updated should any new countries be added. These programs are a great value at a good price and represent a major time saver
AMP-DXCC (IBM PC only)
DXCC Program
\$29.!

AMP-5CC (IBM PC only)
5 Band DXCC Program
AMP-WAZ (IBM PC only)
CQ Worked All Zones
AMP-WAS (IBM PC only)
ARRL Worked All States

NOW HAS COMPUTER BOOKS AND SOFTWARE

OMMODORE 64 USER'S GUIDE by Commodore Engineers

his beginner's book gives you hands-on instructions on ow to set up and use your brand new C-64 computer. earn how to do color animation, generate music or pecialized sound effects and interface the computer with eripheral equipment. Just about every question a beginner ould ask is answered in this useful text. (c) 1982.
66 pages.
122010
Sotthound \$12.95

;OMMODORE 64 PROGRAMMER'S IEFERENCE GUIDE

his programmer's guide will give you all the handy hints nd tips that will let you get full value from your C-64. For le beginner, complicated topics are taken step-by-step, ith plenty of sample programs and complete detailed exlanations. Advanced users will find plenty of pretested and ebugged programs. 1st edition, 486 pages.
」22056
Softhound $\mathbf{\$ 1 9 . 9 5}$

;OMMODORE C-64 STARTER BOOK

 by Jan and Christopher Titus
and David Larsen

his book is designed to get the new C-64 owner up and unning with the minimum of fuss and hassle. Each :hapter is packed with experiments and exercises designed 0 build competence in the user. Full of simple to load and ise programs written with the beginner's need in mind. c) 1984,384 pages.
$\sqsupset 22293$
Softbound \$17.95

3EPAIR AND TROUBLESHOOTING GUIDES

--64, IBM-PC AND APPLE II

by Robert C. Brenner
f you've been taking care of your ham gear, there's cerainly no reason why you can't do much of your own nicrocomputer servicing. These handy guides give you a eal headstart in taking on your "micro" when problems urise. Troubleshooting is clearly illustrated by simple flow :harts that are designed to pinpoint failures and correct hem. There is also an Advanced Troubleshooting chapter or more complicated systems failures. Clear easy-to-read ext and plenty of illustrations.

CIRCUIT DESIGN PROGRAMS
 FOR THE APPLE II

by Howard Berlin, W3HB
Use your Apple to help design electronic circuits. This book is a series of engineering programs written in Applesoft that give you various "what happens if" and "what's needed when" as they apply to a number of engineering questions. By using the computer you can change various circuit components and tell exactly how the circuit will per form without going through extensive manual calculations. (c) 1982, 132 pages.
—21863 Softbound $\$ 15.95$

APPLE Ile PROGRAMMER'S GUIDE by David Heigerman

This book zeros in on how to program the popular Apple lle home computer in both BASIC and assembly language. Chock full of helpful tacts, applications, ideas, suggestions and technical information in one simple easy-to-use reference manual. You also get a number of short application and demonstration programs in BASIC and assembly language. © 1984, 416 pages
$\square 122299$
Softbound \$19.95

APPLE PROGRAMMER'S HANDBOOK by Paul Irwin

Get the most of your Apple computer by learning assembly language programming. Assembly language programs run much laster than basic programs and can be designed for maximum effectiveness with minimum compromise. Plenty of stock routines are included, organized by topic and detailed memory map. This 408 -page book will answer just about all your questions on assembly language programming. © 1984, 480 pages.
L $\quad 22175$
Softbound \$22.95

SPECIAL PRICE

COMPUTER DICTIONARY AND HANDBOOK by Sippl
More than 22,000 definitions, acronyms, and abbreviations as well as 14 information packed appendixes make this an invaluable reference book for all levels of computer users. Operational control, storage devices, and time sharing are just a few of the subjects extensively covered in this important volume. (c) 1980,928 pages
$\square 21632$
SAVE $\$ 5$ Softbound $\$ 29.95$

VIC 20 PROGRAMMER'S REFERENCE GUIDE

To get the Vic to perform for you, you have to know how to program. The book is divided into four sections: BASIC Programming, Machine Language Programming, Input/Output Interiacing and Programming Graphics and Sound Each chapter is fully illustrated with sample programs and has plenty of "how to" explanations. 1st edition, (c)1982, 289 pages
$\square 21948$
Softbound $\$ 16.95$

THE 68000 PRINCIPLES AND PROGRAMMING

 by Leo ScanlonMotorola's 68000 is the first 16 bit μ p to have a 32 bit in ternal architecture. This book covers CPU information that is needed for all microcomputer professionals and hobbyists alike. Also includes information on Motorola's crossmacro assembler, a 68000 instruction set, printouts and interfacing. (c) 1981, 240 pages
$\square 21853$
Soltbound \$15.95

Z.80 MICROPROCESSOR PROGRAMMING AND INTERFACING
 by Nichols and Rony

This is the easy way for novices and experts to learn how to write and design programs for the popular Z-80 microprocessor Book 1 focuses on fundamentals and use of the Z-80 while Book 2 expiores special interest topics in great depth. ©1979
$\square 21609$ Book 1
$\square 21610$ Book 2
Softbound $\$ 12.95$
Softhound \$16.95
\square Buy BOTH Special
SAVE \$4.95

MICRO COOKBOOK Vol. 1 and 2
 by Don Lancaster

Learning to use a PC can be a real challenge. However, Don Lancaster has tried to filter out all the gobbledygook and make it as easy as can be. Volume 1 features down-to-earth coverage of fundamentals, number systems, hardware and software logic, mainstream codes and standards, electronic memory and memory devices and other applications. Volume 2 covers address space, addressing, system architecture, machine code programming, I/O and helpful suggestions to common problems.
$\square 21828$ Volume 1 (c) 1982
$\$ 15.95$
$\square 21829$ Volume 2 ©1983
\$15.95
\square Buy BOTH Special
$\$ 26.95$
SAVE $\$ 4.95$

ORDER FORM

Vame
Address
Sity

Check or Money Order Enclosed
VISA

Card \#

Catalog \#	Title	QTY.	Price	Total
		Subtotal Shipping VISA	$\$ 3.50$	

SATELLITE TELEVISION RECEIVER SEMIKIT

with dual conversion downconverter

FEATURES:

- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polorator controls
- LED channel \& tuning indicators

Install six factory assembled circuit boards to complete.

> SEMIKIT $\$ 300.00$
> Completed downconverter add 100.00

> Completed receiver and downconverter add
> 150.00

JAMES WALTER SATELLITE RECEIVER

2697 Nickel. San Pablo, CA 94806
179
Tel. 415-724-0587

ORR BOOKS

BEAM ANTENNA HANDBOOK

by Bill Orr, W6SAI and Stu Cowan, W2LX The Beam Antenna Handbook, first published in 1955. has been completely revised and updated with the latest information on Beam Antenna design. Computer designed Yagis give maximum gain in minimum space. New info on Yagi HF and VHF beams and dimensions on beams for 10, 18 and 24 MHz WARC bands. Everything you need to know about beam design, construction and operation. 204 illustrations. 268 pages. 1st edition. (c) 1985

$\square \mathbf{R P}$-BA

Softbound $\$ 9.95$

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI
Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagrammed. 192 pages. (s) 1972. 2nd edition.
DRP-WA
Softbound \$7.95

THE RADIO AMATEUR ANTENNA HANDBOOK

by William I. Orr, W6SAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects for vertical, long wire, and HFNHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Deita Loop antennas. The text is based on proven data plus practical, on-the-air experience. 190 pages. (c) 1978. 1st edition.
$\square \mathbf{R P}-\mathbf{A H}$
Softbound \$7.95

ALL ABOUT CUBICAL QUAD ANTENNAS

by Bill Orr, W6SAI - New 3rd Edition

Includes NEW data for WARC bands

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad. There's a wealth of data on construction, feeding, tuning, and mounting quad antennas. 112 pages. (c) 1982 . 3rd edition. \square RP-CQ

Softbound \$6.95
Please add $\$ 1.50$ tor one book, $\$ 250$ tor two or more books to cover shipping and handing

The monthly magazine with a natural blending of two popular hobbies - Ham Radio and Computers

* Articles on Ham Radio \& Most Personal Computers
* Hardware \& Software Reviews
* Various Computer Languages
* Construction Articles
* Much Much More
"...received my moneys worth with just one issue..."
-J. Trenbick
"...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination..."

-Fred Blechman, K6UGT

U.S.A. $\$ 15.00$ for 1 year
Mexico, Canada
$\$ 25.00$
Foreign $\$ 35.00$ (land) - $\$ 55.00$ (air)
(U.S. funds only)

Permanent (U.S. Subscription) \$100.00
Sample Copy
$\$ 3.50$

$$
\begin{aligned}
& \text { Circulation Manager } \\
& \text { 1704 Sam Drive }
\end{aligned}
$$

Birmingham. Alabama 35235
Phone 205/854-0271

Name

Call Sign \qquad

Address \qquad

City State \qquad

Zip \qquad Phone \qquad

Date \qquad

Signature

NCGCo． NEW－TECHNOLOGY HIGH－QUALITY

AFFORDABLE TRANSCEIVERS FOR ALL．WINNERS IN COMPARISON HANDS DOWN：
10／160 M HF TRANSCEIVER
40－15－6 M NEW TRI－BANDER
15 M 15 METER MOBILE

JUST SLIGHTLY AHEAD！

4 MEMORYS－ 3 WAY AUTO SCAN， DUAL VFO，IF SHIFT，CW－W， 400 Hz ． CW．－N 200 Hz ALL 9 BANDS PLUS MARS．BUILT IN AC／DC POWER．SSB． CW OR RTTY．I．F TUNE 3－STEP TUNING SPEED， 200 WATT PEP， MICROPHONE IMPEDANCE 600－50K OHM HAND MIC．INCLUDED．

WITH THE QUALITY YOU HAVE ALWAYS LOOKED FOR！ 40， 15 AND 6 METERS ARE YOUR BASE STATION OR MOBILE WITH AC／DC BUILT IN POWER SUPPLY CW－N 200 Hz OR USB， 2.50239 ANTENNA CON－ NECTORS．HAND MIC BUILT IN TVI FILTER LITTLE TO NO TV INTER－ FERENCE， 20 WATTS PEP，MARS ON 40 AND 6 METERS

A GREAT QRP RIG WITH THE BIG RIG SIGNAL． 2 WATTS OR 10 WATTS OUT， BUILT IN CW SIDE TONE，DIGITAL DISPLAY，HAND MIC．TOP MOUNTED SPEAKER MOBILE BRACKET，RIT OR FINE TUNE TX\＆RX $\pm 4 \mathrm{KHz}, 21$ TO 21.450 MHz SIGNAL TO NOISE MORE THAN 10 dB DOWN
SPECIAL
SPECIAL

SPECIAL
90 DAY WARRANTY ON ALL TRANSCEIVERS－DIRECT FROM NCG OR YOUR DEALER
WE HAVE 12 GHz BASE／REPEATER \＆MOBILE ANTENNAS
NOTE：PRICES ANO SPECIFCATIONS SUBUECT TO

4 ¢⿴囗	
ENGINEERING CONSULTING 583 CANDLEWOOD ST．，BREA，CA 92621 TEL：714－671－2009	

ENGINEERING CONSULTING INTROQUCES
TOUCHTONE ${ }^{*}$ DTMF to RS－232－C 300 BAUD INTERFACE －Use your computer to decode DTMF touchtonas． －Heceive all 16 digits as last as they can be transmitted －Easily program your computer in BASIC to decodemuit digit strings dispiay digits sound aiarms observe secret codes control relays remote base －Simpie to use just provide＋ 12 VDC and audio hodk two wires to the RS－232．C semal input on ydur compu－ －Sample BASIC program ard instructions included －LEDindicator＂Decode－A－Pad＂ Model DAP－1 $\$ 89.95$

Ham Radio's guide to help you find your lo

California

C \& A ROBERTS, INC.

18511 HAWTHORN BLVD. TORRANCE, CA 90504 213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best Since 1962.

FONTANA ELECTRONICS

8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San
Bernardino County.
JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR \& ADVANCED
 COMMUNICATIONS

3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757

Delaware's Friendliest Ham Store.
DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu,
Kenwood, Santec, KDK, and more.
One mile off I-95, no sales tax.

Florida

[^5]AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3
AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814 (808) 949-5564

Serving Hawaii \& Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain. MFJ, Azden, Kantronics, Santec and others.

Massachusetts

James Millen Components by
ANTENNAS ETC.
16 HANSOM ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, bindng posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England You Can Rely On.

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite, Computer applications.
Call Paul WDBAHO

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "'Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

JUN'S ELECTRONICS

460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom - Yaesu Dealer

NEW YORK

ADIRONDACK ELECTRONICS, INC.
1991 CENTRAL AVENUE
ALBANY, NY 12205
518-456-0203
Amateur Radio for the Northeast since 1943.

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

VHF COMMUNICATIONS

915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

ıateur Radio Dealer

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE

 WICKLIFFE, OH (CLEVELAND AREA) 44092216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3
UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.
LaRUE ELECTRONICS
1112 GRANDVIEW STREET SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Larsen, Hustler, Astron, Belden, Antenna Specialists, W2AU/W2VS, AEA, B\&W, Amphenol, Saxton, J.W. Miller/Daiwa, Vibroplex.

THE VHF SHOP

16 S. MOUNTAIN BLVD., RTE. 309 MOUNTAINTOP, PA 18707 717-474-9399
Lunar, Microwave Modules, ARCOS,
Astron, KLM, Tama, Tonna-F9FT,
UHF Units/Parabolic, Santec, Tokyo
Hy-Power, Dentron, Mirage,
Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY 3621 FANNIN
HOUSTON, TEXAS 77004
713-520-7300
1 (800) 231-3057
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY

4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30
Sat 9-3

AZOTIC INDUSTRIES 2026 W. BELMONT
 CHICAGO, IL 60618
 312-975-1290

ELECTRONIC COMPONENTS \& SUPPLIES

- RF CONNECTORS - IDC CONNECTORS
- UG CONNECTORS - D-SUbMINIATURE
- audio connectors - test equip
- linearics
- transistors
- diodes
- digital ic's
- transformers
- trim Caps
- METERS
- computer cables
- relays
- switches
- tools

WRITE FOR FREE CATALOG
VISIT OUR RETAIL STORE
HRS. MON-FRI 10-5 SAT 10-2
PHONE ORDERS WELCOMED 312-975-1290

182

HAZER YOUR ROHN 25 G Tower

- Antenna and rotator mount on HAZER, complete system trams tower in verticle upright position
- Safety lock system on HAZER operates while raising-lowering \& normal position. Never can fall
- Weight transferred directly to tower. Winch cable used only for raising \& lowering. Easy to install and use
- Will support most antenna arrays.
- High quality materials \& wor manship.
- Safety - speed - convenience smooth travel
- Complete kit for 50 or less tower includes winch, cable, hardware and instructions.
Hazer 2-Heavy duty alum.. 12 sq. ft 10ad 5297.00 ppd . Hazer 3 -Standard alum. 8 sq.ft 10 ad 213.00 ppd. Hazer 4. Heavy galv steet. 16 sq. It. Ioad 278.00 ppd. Ball thrust bearing TB-25 for any of above 42.50 ppd . As an alternative, purchase a Martin $\mathrm{M}-13$ or $\mathrm{M}-18$ aluminum tower engineered specifically for the HAZER system.

FRESH STOCK - NOT SURPLUS TESTED - FULLY GUARANTEED

2.30 MHz 12V (* $=28 \mathrm{~V}$)			
P/N	Rating	Each	Match Pr.
MRF406	20W	\$14.50	\$32.00
MRF412,/A	80W	18.00	45.00
MRF421	100W	25.00	56.00
MRF421C	110W	-	60.00
MRF422*	150W	38.00	82.00
MRF426, ${ }^{\text {* }}$	25W	18.00	42.00
MRF428**	150W	55.00	125.00
MRF433	12.5W	12.00	30.00
MRF435*	150W	42.00	90.00
MRF449,/A	30W	12.50	30.00
MRF450,1A	50W	14.00	31.00
MRF453,/A	60W	15.00	35.00
MRF454,/A	80W	16.00	36.00
MRF455,1A	60W	12.00	28.00
MRF458	80W	20.00	46.00
MRF460	60W	18.00	42.00
MRF464*	80W	25.00	60.00
MRF466*	40W	18.75	48.00
MRF475	12W	3.00	9.00
MRF476	3W	2.75	8.00
MRF477	40W	11.00	25.00
MRF479	15W	10.00	23.00
MRF485*	15W	6.00	15.00
MRF492	90W	18.00	40.00
SRF2072	75W	15.00	33.00
SRF3662	110W	28.00	60.00
SRF3775	75W	15.50	34.00
SRF3795	85W	16.50	37.00
CD2545	50W	23.00	52.00
SD1076	70W	17.00	40.00
SD1451	50W	15.00	36.00

Selected High Gain Matched Quads Available
VHF/UHF TRANSISTORS

	Rating	$M H z$	Net Ea.	ch Pr.
MRF212	10W	136-174	\$16.00	-
MRF221	15W	136-174	10.00	
MRF222	25W	$136 \cdot 174$	14.00	-
MRF224	40W	136.174	13.50	32.00
MRF231	3.5W	66-88	10.00	
MRF234	25W	66.88	15.00	39.00
MRF237	4W	136-174	3.00	
MRF238	30W	136-174	12.00	
MRF239	30W	136.174	15.00	
MRF240	40W	136.174	18.00	
MRF245	80W	136.174	28.00	65.00
MRF247	75W	136.174	27.00	63.00
MRF250	50W	27-174	20.00	46.00
MRF260	5W	136.174	7.00	
MRF261	10W	136.174	9.00	-
MRF262	15W	136-174	9.00	-
MRF264	30W	136.174	13.00	
MRF607	1.75W	136-174	3.00	
MRF641	15W	407.512	22.00	-
MRF644	25W	407.512	24.00	54.00
MRF646	40W	407.512	26.50	59.00
MRF648	60W	407.512	33.00	69.00
2N3866*	1W	30.200	1.25	-
2N4427	1W	136.174	1.25	-
2N5591	25W	136.174	13.50	34.00
2N5642*	20W	30.200	13.75	34.50
2N5945	4W	407.512	10.00	-
2N5946	10W	407.512	12.00	-
2N6080	4W	136-174	6.25	-
2N6081	15W	136.174	7.50	-
2N6082	25W	136.174	8.90	-
2N6083	30W	136.174	9.30	24.00
2N6084	40W	136.174	11.75	28.50
TMOS FET				
MRF134*	5W	2.200	\$10.50	-
MRF137**	30W	2-200	22.50	-
MRF138**	30W	1.5-150	35.00	\cdots
MRF150**	150W	1.5.150	80.00	-
MRF172*	80	$2 \cdot 200$	65.00	-

Selected, matched finals for Kenwood, Yaesu, lcom, Atlas, etc. Technical assistance and cross reference information on CD, PT, RF, SRF, SD P/Ns
QUANTITY DISCOUNTS AVAILABLE
WE SHIP SAME DAY C.O.D./VISA/MC INFORMATION AND CALIF. ORDERS: (619) 744-0728

OUTSIDE CALIF. ORDER DESK: 800-854-1927

flear market
RATES Noncommercial ads 100 per word; commercial ads $60 \uparrow$ per word both payable in advance. No cash discounts or agency com missions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.'H. 03048.

CX7 REPAIRS, 415-549-9210.

LETTERING and text for QSL pasteup and label usage. Stamp brings circular. Labelcraft, PO Box 412, W. Sand Lake, NY 12196.

HOUSE READY FOR HAM. Beautiful mountain top all brick 4 bedroom, 3 full bath home and radio site on one acre landscaped, private, with huge inground pool. Located 55 miles from Washington, DC and 60 miles from Baltimore, easy commute by Amtrack or van pools. Extremely energy efficient brick home, full basement and other extra rooms, radio room. All cable, poles, antennas, fire alarm system and intercom system stay. Must see to fully appreciate. Call or write to receive free written details of all features, $\$ 250,000$. (301) 371-7521. John Murray, Box 290, Jefferson, Maryland 21755.

PROGRAMMED EPROMS \& PROMS: 82S23/123, 82S126/129 fusable link $\$ 6.00$ each; $2708,2716(+5 v), 2732(+5 v)$ EPROMS $\$ 9.00$ each postpaid. Send coding list, hexadecimal format to Douglas Hall, 6434 Melia Street, Springfield, VA 22150.

CUSTOM MADE embroidered patches. Any size, shape, colors. Five patch minimum. Free sample, prices and order-

Foreign Subscription Agents for Ham Radio Magazine	
Ham Rado Austria Karin Ueber Pootllach 2454 West Germany	Canada Send orders to Ham Radio Magazine Pnces in Canadian tunds
Ham Radio Belgium Stereohouse	
$\begin{aligned} & \text { Brusselsosieenweg } 416 \\ & \text { 8-9218 Gent } \end{aligned}$ $\begin{aligned} & \text { B-9218 G } \\ & \text { Belgium } \end{aligned}$	Ham Radio Maly Via Pordenone it 1.20132 Milano
Ham Radio Holland Postbus 413 NL.7800 AI Emmen Holland	Haly Ham Ractio Swizerland Karin Ueber Posttach 2454
Mam Radio Europe Box 2084 S-194 02 Upplands Vasby Swerden	0. 7850 Loerrach West Germany Ham Radio England
Ham Radio France	
${ }_{20}$ SM Electiranic	Cranborne Road
	Poners Bar Hent EN6 3W
France	England
Ham Radio Germany	
	${ }_{1}^{\text {Holland Padio }}$
D. 7850 Loerrach West Germany	Greenside, Johannesburg Republic of South Africa

ing information. Hein Specialties, Inc., Dept. 301, 4202 N. Drake, Chicago, IL. 60618.
RECLAIM SILVER from electronics scrap! Write RALTEC, 25884F Highland, Cleveland, OH 44143.

COMPUTERIZE YOURIC-720. Keyboard frequency entry, 64 memories, scanning, (frequency, memory, and mode), many more features. Requires no interface, just cable - directions included. For Commodore 64. Cassette \$14.75, disk $\$ 16.75$, ppd. Cables also available. David Oliver, W9ODK, Rt. 2, Box 75A, Shevlin, MN 56676.
CUSTOM EMEROIDERED Emblems - Cloisonne' enameled pins, your design, low minimum, excellent quality, free booklet. A. T. Patch Co., Dept. 65, Littleton, NH 03561. (603) 444-3423

HAMSWAP Newsletter. Send us your Free Ad. Include phone. Buy/Sell/Trade. Subscriber equipment discounts. 12 issues $\$ 900$. HamSwap, PO Box 420171, Sacramento, CA 95842.

WINDMILL \& TOWER: 1978 Dunlite 2000 watt windmill, 110^{\prime} Rohn 45G tower with new concrete anchors, 110V-220 amp battery bank, converter, loading switch. Complete system only $\$ 4.995 .00$. (518) 623-9951. Box 196, HCA-01, Warrensburg, NY 12885

TRS-80 Model I/IIIIV owners. HF antenna design program calculated dimensions for dipole, Yagi, and quad antennas $\$ 14.95$ (cassette) $+\$ 2.00$ s\&h to Cynwyn, Dept. H, 4791 Broadway, Suite 2F, New York, NH 10034.

MILITARY RADIOS: CPRC-26 Manpack Radio (described in March 1985 Ham Radio). Transceives $46-54 \mathrm{MHz}$, with battery box, antenna, crystal, handset: $\$ 22.50$ apiece, $\$ 42.50$ pair, good condition. R-390A Receiver, $5-32 \mathrm{MHz}$ all modes, 4 mechanical filters, meters sealed (government removed, operation unaffected): $\$ 175$ complete/checked; spair parts unit (80% complete, missing PTO/IF): $\$ 65$. Info SASE. CPRC-26 add $\$ 4 /$ unit shipping. R-390A shipping charges collect. Baytronics, Dept. HR, Box 591, Sandusky. Ohio 44870. 419-627-0460 evenings.

FOR SALE: Hallicrafters SX-100 communications receiver. Antique collectors item. Good condition. $\$ 139$ or best offer Gerry Nemetz, W4NEX, 8202 Beechwood Drive, Lynchburg, VA 24502. (804) 239-7789.
3-5002s @ $\$ 70.00$ each, new, 50 year collection tubes. Advise requirements, W5QJT, PO Box 13151, El Paso, TX (915) 532-2509.

MINT ROBOT 400. First sync modification. Instruction book and original box. I ship. \$275 firm. Jim Valentino, KW2W, PO Box 438. Mastic Beach, NY 11951.

RUBBER STAMPS: 3 lines $\$ 4.50$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information.

CHASSIS and cabinet kits. SASE K3IWK

IMRA, International Mission Aadio Association, helps missionaries. Equipment loaned. Weekday net, $14.280 \mathrm{MHz}, 2-3 \mathrm{PM}$ Eastern. Eight hundred Amateurs in 40 countries. Brother Frey, 1 Pryer Manor Road, Larchmont, NY 10538.
ELECTRON TUBES: Receiving, transmitting, microwave
all types available. Large stock. Next day delivery, most cases Daily Electronics, PO Box 5029, Compton, CA 09224 (213) 774-1255.

RTTY-EXCLUSIVELY for the Amateur Teleprinter. One year $\$ 7.00$. Beginners RTTY Handbook $\$ 8.00$ includes journal index. P.O. Box RY, Cardiff, CA 92007.

HOW TO CONVERT any cassette tape player to a message sender and automatic IDer for repeater or base station. For complete plans send $\$ 5.00$ plus 22Φ stamps to: Jesse Hernandez, Box 322, Memphis, TX 79245 WB5MVP.

NEEDED: Schematic and alignment procedure for Swan 700 CX Xevr. Paul Migliore, AK2X, 1102 Drummond Ave., Asbury Park, NJ 07712.
CABLE TV EQUIPMENT. Jerrold, Hamlin, Zenith - many others. Factory Unitslowest dealer prices. Complete illustrated catalog $\$ 2.00$. Pacific Cable Co., Inc., 73251/2 Reseda Blvd., Dept. 1004, Reseda, CA 91335. (818) 716-5914

WANTED: Xtal 6M-FM transceiver (Regency, Genave, commercial, etc.). State asking price, condition, specifications Barry Ornitz, WA4VZQ, 4740 Edens View Road, Kingsport, TN 37664

VIC-20 phone patch. Build your own simplex autopatch for less than $\$ 50$ using your own transceiver and VIC-20 or Commodore 64. For full documentation and program cassette tape, send \$20 to: KIE Enterprises, PO Box 72, Running Springs, CA 92382. (714) 867-7120

SELL Cable TV descramblers, converters, remote tuners. Dealers wanted. Part or full time. Work from home. No experience necessany. Full details. P.G. Video Corp., 61 Gatchell St., Dept. HR, Buffalo, NY 14212
OLD RADIO transcription discs wanted. Any size, speed. W7FIZ, Box 724 HR, Redmond, WA 98073-0724.
aNTIQUE RADIOS, schematics, tubes and literature. Send SASE to VRS(HR), 376 Cilley Rd., Manchester, NH 03103 for large list.

FOR SALE: Heath HW-101/P.S. \$225, HBO descrambler filter schematic $\$ 2.00$. SASE to J.C., PO Box 6349, Evansville, IN 47712
SIGNAL GENERATORS: URM-25D, 10 kHz thru 50 MHz \$245.00; URM-26B, 4 MHz thru 405 MHz \$245.00; HP614A, 900 MHz thru $2100 \mathrm{MHz} \$ 345.00$; HP618B, 3.8 GHz thru 7.6 GHz \$375.00; HP608C 10 MHz thru 480 MHz \$345.00; TS-510/U, 10 MHz to $\mathbf{4 2 0} \mathrm{MHz} \$ 295.00$, all lab calibrated, have good stock so order today. We accept M/C, VISA, or check, FOB Otto. Immediate shipment. Phone Bill Slep 704-524-7519, Slep Electronics Company, Highway 441, Otto, NC 28763.

Coming Events ACTIVITIES
 "Places to go..."

KENTUCKY: The Central Kentucky ARRL Hamfest, sponsored by the Bluegrass ARS, Sunday, August 11, 8 AM to 5 PM, Scott County HS, Longlick Road and US 25, Georgetown. Tech forums, license exams, awards and exhibits. Air conditioned facilities. Free outdoor flea market space. Tickets $\$ 3.50$ advance and $\$ 4.00$ at gate. Talk in on $76 / 16$. For information or tickets SASE to Scott Hackney, KI4LE, 629 Craig Lane, Georgetown, KY 40324.

PENNSYLVANIA: The Tioga County Amateur Radio Club's 9th annual Hamfest, Sunday, August 18, Island Park, Blossburg. 9 AM to 5 PM. VE's will give walk-in exams. For information write TCARC, PO Box 56, Mansfield, PA 16933. Flea market, dealers, park and pool, snack bar. Admission $\$ 3.00$. Spouse and kids free. Talk in on 146-19/79, 146-52/52 and CB. For information: Durwood Learn, WB3DKZ, 11 Bryden Street, Wellsboro, PA 16901. (717) 724-5613.

TEXAS: The Austin ARC and the Austin Repeater Association in conjunction with the Texas VHF-FM Society announces the third annual Austin Summerfest, August 2, 3 and 4, Austin Marriott Hotel, I-35 and US 290, Austin. Seminars, QCWA hospitality suite, deaier displays. FCC exams for all classes Saturday. Ladie's programs. Austin's "Aquafest" is this same weekend and will provide additional entertainment. Registration $\$ 5$ advance, $\$ 7$ at the door. Persons under 18 admitted free. Swaptest tables available starting 6 AM Saturday at $\$ 1$ per table, limit two. Talk in on WA5YAN/R 146.34/94. For more information: Austin Summertest, PO Box 13473, Austin, TX 78711.

PENNSYLANIA: The 48th annual South Hills Brasspounders and Modulators Hamfest, August 4, 9 AM to 4 PM, South Campus, Cormmunity College of Allegheny County, Pittsburgh. Tickets $\$ 3$ each. $2 / \$ 5$. Oscar, RTTY and packel radio forums. Flea market. Talk in on $146.13 / 73$ and 146.52 simplex. For more information: Bill Gardiner, 4756 Child Drive, Pittsburgh, PA 15236.

INDIANA: The annual Bloomington Hamfest, Sunday, September 1, 147.18/.78 repeater site, Vernal Pike off SR 37 bypass. 8 AM to 2 PM. Admission $\$ 2.00$. Food concession. No charge for selups, bring your own tables. For more information: Bob Myers, K9KTH, 306 S. Fairview Street, Bloomington, IN 47401. SASE or dall (812) 332-1105.

INDIANA: The 6th annual Grant County Amateur Padio Club Hamfest, Sunday, August 11, 4H Fairgrounds, Marion. Doors open 8 AM. Refreshments, free parking, license exams. Table reservations $\$ 2 / 8^{\prime}$ table. Donation $\$ 2.00$ advance. $\$ 3.00$ gate. For more information SASE to WB9EAP, Brooks Clark, 2202 South Boots Street, Marion, IN 46953.

WASHINGTON: Tacoma Hamfair, sponsored by the Radio Club of Tacoma. August 17 and 18, Pacific Lutheran Univer sity, Tacoma. Tech seminars, forums, travelogs and more Large flea market. License exams, send 610 to W7BUN. Registration $\$ 5.00$. Dinner $\$ 8.00$. Flea market table $\$ 15 /$ day $\$ 20 / 2$ days includes one registration. Register with Grace Tietzel, A07S, PO Box 45079, Tacoma, WA 98445 or call Eva Anderson, WB7ONS, (206) 564-8347.

OHIO: 43rd annual Findlay Hamfest sponsored by the Findlay Radio Club at the Hancock County Fairgounds. Sunday, September 8, 6:30 AM to 5 PM . Advance tickets $\$ 3.00$ by September 1. At the door $\$ 4.00$. Tables $\$ 6.00$ each. Outdoor flea markel spaces $\$ 3.00$ each. Talk in on $147.75 / 15$. For more information write Findlay Radio Club, PO Box 587, Findlay, Ohio 45839.

MISSOURH: The St. Charles Amateur Radio Club's Hamfest '85, August 25, St. Charles City Hall complex, 200 North 2 2nd Street, St. Charles. Giant flea market, commercial vendors, XYL programs, FCC exams, food available. All under cover. Parking $\$ 1.00$, tickets $\$ 1.00$ advance; $\$ 1.50$ door. Talk in on $146.07 / 67$ and 146.52. Tickets from WD0CZE, 121 Barkwood Trail, St. Charles, MO 63303.

CALIFORNIA: Valley of the Moon Amateur Radio Club's fifth annual "Ham" breakfast and swapmeet, Sunday, August 11, Sonoma Community Center, 276 East Napa Street, Sonoma. 9 AM to 4 PM. Breakfast 9 to 11:30 AM. Sausage, eggs, pancakes, 'taters, o.j. and coffee, all you can eat for \$5.00! Swap tables setup starts 8 AM , spaces $\$ 5.00$ each. Better bring your own tables. Open auction at 1 PM. Surrounding points of in terest for the whole family. Admission $\$ 1.00$. For reservations or more information: Darrel Jones, WD6BOR, 358 Patten St Sonoma, CA 95476. (707) 996-4494.

VERMONT: The annual BARC International Hamfest, August 10 and 11, Old Lantern Campgrounds, Charbotte. $\$ 4.00$ both days. Children under 12 free. Outdoor flea market space $\$ 2.00$. Indoors $\$ 5.00$. RC model airplane show. CAN-AM tugowar. Talk in on 34/94, 01/61 and 52. Queries to Roger, WA10ZE; flea market info Bob, W1DQO. Both at Box 312 Burlington, VT 05402.

ILLINOIS: The Shawnee Amateur Radio Association is sponsoring SARA Hamfest '85 Sunday, September 8, John A Logan College Gym, Highway 13 near Carterville. New equipment and computers, ladies' activities, displays, flea market, crafts. All inside. FCC exams Sunday AM. Lunch available Admission $\$ 3.00$. Talk in on $146.25 / .85,146.52$ simplex, 3.925 MHz. For information: Shawnee ARA, 502 West Kenicott, Carbondale, IL 62901. (618) 457-7586.

1985 BLOSSOMLAND BLAST, Sunday, October 6, 1985 Write "BLAST", PO Box 175, St. Joseph, MI 49085.

MAINE: The 1985 Windsor Hamfest, Saturday, September 7, Windsor Fairgrounds. Flea market, programs, speakers, distributors, and the traditional Saturday bean and casserole supper. Gate donation $\$ 1.00$. Camping $\$ 3.00$ per night; $\$ 5.00$ 2 nights. Talk in on $146.22 / 82$ repeater. For information: Ron Dishman, N1CMZ, 37 Martboro Avenue, Augusta, ME 04330 (207) 623-8351

NEW JERSEY: The Ramapd Mountain ARC, WA2SNA, presents its 9 th annual flea market, August 17, Oakland American Legion Hall, 65 Oak Street, Oakland, 20 miles from GW bridge. Admission $\$ 1.00$. Non-ham family members free Indoor tables $\$ 6.50$. Tailgating $\$ 3.00$. Talk in on 147.49/146.49 and 52. For information: Tom Risseeuw, N2AAZ, 63 Page Drive, Oakland, NJ 07436. Tel. 337-8389 after 6 PM.

WISCONSIN: Green Bay Mike \& Key Club's Summer Swapfest, Salurday, August 17, Ashwaubenon Community Center, Anderson Drive across from Baypark Square Mall Free admission and parking. Doors open 8 AM. Sellers 7 AM Buy, sell, trade. Reserved 8 ' tables $\$ 5.00$. Limit 4. SASE with check to Green Bay Mike \& Key Club, Bill Johnson, N9CNO 2177 Orrie Lane, Green Bay, WI 54304. (414) 494-8948.

MISSOURI: The Ozarks Amateur Radio Society's 4th annual Congress \& Swapfest, Sunday, September 8, City Park, Jct. of US 60 and Highway 37, Monett. Swapfest 11:00 AM. Buffet dinner 1:00 PM. No tickets necessary. All Amateurs and families welcome. Talk in on 146.37/.97, 146.52 and 7.250 MHz . For information: Ozarks Amateur Radio Society, Box 327, Aurora, MO 65605. (417) 678-5330.

GEORGIA: Augusta Hamfest, September 15. Dealers and tailgaters welcome. Food and drinks available. ARRLNEC exams 8 AM. Tickets $\$ 1.00$. $6 / \$ 5,13 / \$ 10$. Talk in on $34 / 94$. SASE to Bill Hardin, 4430 Forrest Drive, Martinez, GA 30907 (404) 863-4360

INDIANA: The Tippecanoe Amateur Radio Association's 14th annual Hamfest, Sunday, August 18, Tippecanoe County Fair grounds, Teal Road and 18ih Street, Lafayette. Grounds open 7 AM . Tickets $\$ 3.00$. Large flea market, dealers, refreshments and fun. Talk in on 13/73 or 52. For tickets or information Latayette Hamtest, Route 1, Box 63, West Point, IN 47992

ILLINOIS: Bolingbrook Amateur Radio Society's B.A.R.S. Hamfest '85, Sunday, September 8, Santa Fe Park, 91 st and Wolt Road, Willow Springs. Advanced registration $\$ 2.00 . \$ 3.00$ at the gate. Talk in on 147.33/93 and 146.52. For information: Ed Weinstein, WD9AYR, 7511 Wainut Ave., Woodridge, IL 60517. (312) 985-0527

MICHIGAN: The Grand Rapids Amateur Radio Association's annual Swap and Shop. Saturday, September 21, Hudsonville Fairgrounds. Dealers, indoor sales area, outdoor trunk swap, concession. Gates open 8 AM. Talk in on 146.16/76. For information: Grand Rapids ARA, PO Box 1248, Grand Rapids, MI 49501.

PENNSYLVANIA: The Skyview Radio Society's annual Hamfest, Sunday, September 16, Clu Grounds, Turkey Ridge Rd., New Kensington. Noon to 4 PM. Registration $\$ 2.00$. Vendors $\$ 4.00$. Talk in on $146.04-64$ and 52.

PENNSYLVANIA: The Central Pennsylvania Repeater Association's 12th annual Hamfest/Computerfest, August 25 adjacent to Hersheypark, Chocolate Town, USA. Registration $\$ 3.00$. Children 12 and under free. Special reduced admission to Hersheypark for registrants and families. Large indoor dealer and flea market. Large outdoor tailgate area. Food and refreshments. Talk in on 145.47 repeater or 146.52 simplex WA3KXG. For information: Paul W. McDonnell, N3BKI, (717) 697-1880, noon to B PM

PENNSYLVANIA: The Uniontown Amateur Radio Clut (W3PIE) will hold its 36th annual Gabfest. Saturday, September 7. Club grounds, Old Pittsburgh Road, Uniontown. Registraion $\$ 3.00$ or $2 / \$ 5.00$. Free Parking - Free Coffee - Free Swap \& Shop with registration. Talk in on 147.645-.045 \& 144.57-17. For information: John Cermak, WB3DOD, U.A.R.C. Gabfest Committee, PO Box 433, Republic, PA 15475. (412) 246-2870.

VIRGINIAWEST VIRGINIA: The Bluefield Hamfest, sponsored by the East River Amateur Radio Club, will be held Sunday, August 25, Brushfork Armory Civic Center, 1 mile north of Bluefiedd, WV. 9 AM to 3 PM. Admission $\$ 4.00$. Children under 12 free. Large indoor flea market, satellite TV and various specialty dealers. Paved parking, food on site, other activities. Walk in license exams 9 AM. Bring copy of license and completed 610 Form. $\$ 4.00$ fee. Talk in on 144.89/145.49 and 146.52. For information: Jim Perdue KC8NG, Rt. 5, Box 457, Bluefield, WV 24701.

NEW YORK: The Putnam Emergency Amateur League (PEARL) will have its annual Electronics Extravaganza, August 17, 9 AM to 4 PM, J.F. Kennedy Elementary School, Brewster. Admission $\$ 2.00$. Tables $\$ 5.00$. Walk in VEC exams. For table reservations and information: R. Dillion, N2EFA, RFD 7, Noel Court, Brewster, NY 10509. Talk in on 144.535/145.135.

ALABAMA: The Huntsville Hamfest, Saturday and Sunday, August 17 and 18, Von Braun Civic Center in Huntsville. Free admission. Exhibits, forums, air-conditioned indoor flea market and non ham activities. Walk in FCC exams 9 AM Saturday, August 17. Family tours of the Alabama Space \& Rocket Center available. Some camp sites with hookups available first come, first served. Reserved flea market tables $\$ 5 /$ day. For more information: Huntsville Hamfest, 2804 S. Memorial Parkway, Huntsville, AL 35801.

PENNSYLVANIA: The Mid Atantic Amateur Radio Club's annual Hamfest, Sunday, August 11, 9 AM to 4 PM , rain or shine, Bucks County Drive-In Theater, Rt. 611, Warrington. Admission $\$ 3.00+\$ 2.00$ for tailgating. Setup starts 8 AM. Bring your own table. Plenty of parking, refreshments. Talk in on WE3JOE/R, 147.66/.06 or 146.52 . For information: MARC, PO Box 352, Villanova, PA 19085 or call Bob, WA3PZO (215) 449-9727.

ARKANSAS: The 16th annual Queen Wilhelmina Hamfest, Queen Wilhelmina State Park, September 7 and 8. This beautiful state park facility on top of Rich Mountain near Mena, offers family fun and relaxation. Free admission, dealer display, Saturday night banquet, $\$ 7.00$, camping, tailgating, flea market, miniature golf, wild life zoo, new playground, miniature train ride, ladies' tour. Talk in on 146.19/.79. For information: John Harris, KC5XK, 5018 S. 9th, Ft. Smith AR 72903

ILLINOIS: Vermilion County Hamfest, August 25, W9MJL Clubhouse, Harrison Park West, Danville. Donation \$1.50 at gate; $\$ 1.00$ advance. Saturday evening steak cookout,
$\$ 5.00$ reservations. Talk in on 146.22-82. For information and reservations: Joe Mayer, KB9GS, 613 E. Kelly, Box 356, Westville, IL (217) 267-2946.

OPERATING EVENTS

'Things to do...'

Riding Radio Operators - Amateur Radio Motorcycle Club Net meets every Thursday night at 0300 UTC at 3888 kHz standard time and 7237.5 kHz daylight saving time. An eastern USA group meets one hour eartier at 3888 kHz year-round. Send business SASE to AGON. Gary McDuffie, Rt. 1, Box 464 Bayard, NE 69334 and ask for net information

September 4: Howdy Days. Eligibility - all ticensed women operators throughout the world. Operations - all bands and modes. No cross band. Station counted only once. Exchange - YLRL member or non YLRL member. Score 2 points fo each YLRL member worked and 1 for non YLRL member. Al logs must show YLRL membership or not, score and mus be received by October 4, 1985. Send to Marty Silver, NY4H 3118 Eton Road, Raleigh, NC 27608.

August 18: The DuPage Amateur Radio Club will operate special event station W9DUP from the War Museum sub marine, U.S.S. Silversides, Navy Pier in Chicago. 1300 Z August 18 to 0200Z August 19. For a special submarine QSL card, SASE to W9DUP, PO Box 71, Clarendon Hills, IL 60514

August 17: 26th annual New Jersey OSO Party: 2000 UTC Saturday, August 17 to 0700 UTC Sunday, August 18 and from 1300 UTC Sunday, August 18 to 0200 UTC Monday, August 19. Phone and CW are considered same contest but separate bands. Station may be contacted once on each band. Sug gest phone activity on even hours; 15 melers on odd hours Exchange QSO number, RST, and QTH. NJ stations send county for QTH. Send logs and comments to: Englewood Amateur Radio Association, PO Box 528, Englewood, NJ 07631-0528. Include \#t0 SASE for results.

surface-mounted components improve circuit designs

The traditional approach to printed circuit board design has been to lay out the board so that component leads go through holes in the board and are soldered to pads on one or both sides of the board. A technique first developed in the mid-1970's, using Surface Mounted Components (SMCs), has finally caught on, and achieves dramatic improvement over standard PCB designs. In the new approach, the PCB is designed for the same functional application, but the components are all mounted directly on the surface of the circuit paths themselves - no holes! All of the components are designed with short, flat leads that are flush with the PC path. This technique is particularly useful for RF circuits because lead lengths are dramatically shortened, thereby reducing parasitic inductance and capacitance, and improving EMI/RFI problems. Proper design of the components can maintain the impedance integrity of stripline designs right into the active region of the component. Circuits using this approach at 1200 to 1500 MHz give performance nearly as good as their low frequency counterparts. Let's hope that this attracts some real attention to the development of more equipment for the 1200 MHz Amateur band! Additionally, manufacturing costs are significantly reduced and reliability is improved. Circuit densities can be increased by 30 to 50 percent, resulting in considerable reduction in size, for use in complex equipment. The technique is particularly well suited to full automated production, and high volume producers such as the audio and TV industry are now regularly delivering products incorporating this approach. We should see the first uses
of this improved technique in Amateur equipment in the immediate future.

computer-aided everything

The flood of information that seems to fill everyone's mailbox these days includes an increasing amount of data promoting the ways in which a computer can make each of our personal endeavors a snap. Productivity is the magic word, but much of what's offered seems to actually add complexity to such nominally simple tasks as home budget management.

This is not the case with computeraided engineering, design, and manufacturing - CAE, CAD, CAM as they're called. Each of these tasks normally involves thousands of steps, each of which must be executed exactly, in complete compliance with design rules, and in concert with other phases of the process. All must be organized so that the final product is technically and physically correct, and on time. Modern product development cycles are frequently so short that there would be no way to do all the necessary steps by hand.

Take the example of designing a new computer chip. Such a chip may have a complex architecture, and 30 to 40 thousand active elements. By using computer-aided techniques, the design rules for circuit interconnects, layout, propagation delays, etc., can all be simultaneously considered every time a single change is made. A CAE tool called a "silicon compiler" actually contains the design rules for making the IC masks stored in computer memories. As the system architect and design engineer work on the chip's functional characteristics, the silicon compiler automatically includes the necessary semiconductors, routings, chip real-estate and thermal characteristics in the final design. Using these techniques, three employees of a major computer manufacturer were
able to design a 32-bit minicomputer chip set lincluding nearly 40,000 transistors) in less than a year.

It's been estimated that there are fewer than 5000 integrated circuit designers in the entire world. With the design tools offered by CAE and CAD systems, at least half of all electronic engineers could participate directly in the design of semi-custom ICs.

The prospects for even more dramatic advances in electronics are thus enhanced by the broad participation of another half-million or so engineers whose creativity is now frustrated.

microwaves cook rocks

The success of commercial mining operations depends on assessing the extent to which rocks bearing sufficient quantities of desired material can be processed. Therefore, the quantity of desired ore per ton of rock is an important measure of the ultimate financial value of the process. Because one of the major problems in ore processing is keeping impurities out of the desired product, complex - and therefore expensive - steps must be taken to resolve these problems.

A new technique developed by a Colorado company may represent a major breakthrough in this field. Recognizing that each element has an atomic structure that can be excited by external energy sources, the company has devised a technique for illuminating rocks containing various elements with microwave energy matched to the resonant frequency of the element. The result is an ability to selectively melt desired material and leave surrounding material and impurities "cool" and undisturbed. Although the energy expenditure/recovery ratio is not obvious, the technique merits watching as yet one more example of RF in the "workhorse" environment.
ham radio

for Novice, General, Advanced and Extra
AMECO study guides are taken from the FCC Amateur Exam syllabus, PR 1035A and have answers keyed to the ARRL's recently released study material. These study guides are compatable with ARRL and all other VEC exams. While nothing can guarantee that you will pass, AMECO study guides will make sure that you are fully prepared and ready-to-go when you sit for the exam.
Each study guide has been written in a clear, precise easy-to-read format. Each question is fully explained. For subjects that need a more complete explanation, AMECO has cross referenced the Novice and General Class study guides with AMECO's AMATEUR RADIO THEORY COURSE, 102-01.

27-01 Novice Class
12-01 General Class
26-01 Advanced Class
17-01 Extra Class
23-01 Novice Class Theory Course
102-01 Amateur Radio Theory Course
Order today! Get yourself ready to upgrade with AMECO Study guides
Please enclose $\$ 3.50$ per order for shipping and handling
ham
GREENVILLE, NH 03048
(603) 878-1441

MTISSOURD RADIO CENTER

ANTENNA SALE

[^6]

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. Tc get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertisf and your requested information should arrive shortly. If the card is missing, send all the pertinent informatio on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

[^7]Limit 15 inquiries per reques:
Please use before September 30, 1985.

ALL MODE MOBILE TELEPHONE INTERFACE Automatic Vox Phone Patch System

OPTIONAL:
DTMF TELEPHONE TYPE SPEAKER/ MICROPHONE

IOTLINE-007 is a fully automatic simplex telephone interconnect. Operates through any base transceiver with FM-AMiquelched SideBand mode. No modifications to the transceiver, just connect to the external speaker, microphone and phone line. JOX operation both transmit and receive. Selectable tone or rotary dialing. Repeater pickup operational also.
' Programmable access code

- Adjustable VOX both transceiver and phone line.
' Will not transmit when frequency is busy, 7 second clear time
* Programmable CW ID
* Adjustable microphone and line gain
* Microphone jack for base operation
* 3 or 12 minute timer
* Dial restrict switch
* Ringback (reverse patch)
* Accepts speed dialing
* Operates on $115 / 220$ VAC, 12 VDC

NO EXTRAS TO PURCHASE FOR OPERATION, TRANSCEIVER AND PHONE LINE CONNECT TIME 30 MINUTES. N.C.G. CO.

1275 N. Grove Street
Anaheim, California 92806

"TUNE IN" THE WORLD OF SPECIALIZED COMMUNICATIONS!

Thousands of "Ham Radio" operators across the country are enjoying "'Specialized Communications' modes. Whether it's FSTV, SSTV, FAX, OSCAR, EME, RTTY, PACKET or COMPUTERS, today's Radio Amateur is a highly skilled Communications Specialist!

Providing full, in-depth coverage of these modes is our business and we've been doing it now for over 19 years! And now we're expanding!

Now published "monthly" 10 times per year, SPEC-COMru readers are kept up-to-date in a world of fast moving modern technology.

Why not give us a try? Back issue samples are available for just $\$ 2.00$ ppd. (Master Article Indexes add \$1.00).
Special Six Month Trial Subscription - $\$ 10.00$. U.S./Canada/Mexico Annual Subscription $\$ 20.00$. (Foreign Subscriptions slightly higher).

SPEC-COM ${ }^{\mid 1}$

Amateur Radio Specialized Communication Journal P.O. Box H Lowden, Iowa 52255 (319) 944-7669 (Membership Services)

NOTE: Prices and specifications subject to change without notice or obligation

MULTI BAND TRAP ANTENNAS

 and space age micro circuitry. This programmable 32 tone encoder measures a scant $.5 \times 1.0$ x .15 inches; no small wonder it allows the addition of continuous tone control to a bunch of hand held transceivers that lack space.

Why not snip your problems in the bud, with our fast, one day delivery and attractive one year warranty.
\$29.95 each

426 W. Taft Ave.. Orange, CA 92665-4296 Local (714) 998-3021 • FAX (714)974-3420 Entire U.S.A. 1-800-854-0547

Presenting two small cases for a lot of mobile power.

You won't find a 45 -watt. 2 -meter FM mobile rig that's built smaller than the Yaesu FT-270RH

Nor will you find a dual-band FM mobile that offers the crossband full-duplex capability found in the 25-watt Yaesu FT-2700RH

It shouldn't be surprising. Weve been coming up with a lot of innovative concepts lately

The FT-270RH measures just $2 \times 6 \times 7$ inches. Conveniently fitting its high-power punch into many small spaces of your car. Places where other 45 -watt mobiles just won't fit.

The FT-2700RH is small too. Smaller than other dual-banders. But with one big difference: a "DUP" button. Push it., and you're operating full duplex. 2 meters on one VFO. 440 MHz on the other Each at 25 watts. So you can simultaneously
transmit and receive in true telephone style.

Once installed you'll find the FT-270RH and the FT-2700RH equally simple to operate. Just turn the rig on, dial up a frequency, select offset or duplex split, and you're on the air

Each rig gives you 10 memories for storing your favorite frequencies. Dual VFO capability. A clean. uncluttered LCD display for easy readout. Push-button jumps through the band in 1 MHz steps. Band scanning with programmable upper and lower limits And priority channel operation.

You don't even have to take your eyes off the road to determine your operating frequency and memory channel. An optional voice synthesizer announces them both at the push of a button on the microphone. The FT-2700RH announces both your

2 -meter and 440 MHz operating frequencies.

Also, tone encode and encode decode capability is programmable from the front panel. using an optional plug-in board.

So when you need a lot of power in a compact mobile radio, discover Yaesu's FT-20RRH and FT-200RH. There's nothing else like them on the road

YAESU

Yaesu Electronics Corporation

6851 Walthall Way. Paramount. CA 90723 (213) 633-4007

Yaesu Cincinnati Service Center

9070 Gold Park Drive. Hamilton, OH 45011 (513) 874-3100

Prices and specifications subject to change without notice.

"DX-cellence!"

TS-940S
The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100\% duty cycle transmitter. Super efficient cooling system using special air ducting works with the inter nal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour.
- Programmable scanning.
- Semi or full break-in (QSK) CW.
- Low distortion transmitter

Kenwood's unique transmitter design delivers top "quality Kenwood" sound.

- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- Graphic display of operating features Exclusive multi-function LCD sub-display panel shows CW VBT, SSB slope tuning. as well as frequency, time, and AT-940 antenna tuner status.
- QRM-fighting features. Remove "rotten QRM" with the SSB slope tuning. CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM. plus SSB. CW, AM, FSK

Optional accessories:

- AT-940 full range (160-10 m) automat antenna luner - SP-940 external speaker with audio filtering • YG-455C$(500 \mathrm{~Hz}), Y G-455 \mathrm{CN}-1(250 \mathrm{~Hz})$,
YK-88C-1 $(500 \mathrm{~Hz})$ CW filters;
YK-88A-1 (6 kHz) AM filter $\bullet \mathrm{VS}-1$ voice synthesizer - SO-1 temperature

compensated crystal oscillator • MC-42S UP/ DOWN hand mic. - MC-60A, MC-80, MC-85 deluxe base station mics. - PC-1A phone patch - TL-922A lineat amplifier - SM-220 station monitor - BS-8 pan display - SW-200A and SW-2000 SWR and power meters.

- High stability, dual digital VFOs.
An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel",
- 40 memory channels. Mode and frequency may be stored in 4 groups of 10 channels each.
- General coverage receiver.
Tunes from 150 kHz to 30 MHz
-1 yr . limited warranty. Another Kenwood First.

[^0]: *Available from Ham Radio's Book Store, Greenville, New Hampshire 03048, $\$ 12.95$ plus $\$ 3.50$ shipping and handling

[^1]: "Solid State Exciter," Robert E. Bloom, W6YUY, 73, December, 1970.
 "Linear Amplifier Design," Bill Orr, W6SAI, ham radio, July, 1979, page 34. "Modular Linear Amplifier for the High-Frequency Amateur Bands," Jerry Pittenger, K8RA, ham radio, January 1981, page 12.
 "A 3CX800A7 Linear Amplifier," Jerry Pittenger, K8RA, ham radio, August, 1984, page 17.

[^2]: By Jerry Pittenger, K8RA, 2165 Sumac Loop South, Columbus, Ohio 43229

[^3]: Satellite Video
 Services. Inc. RR \#1. Box $85-\mathrm{S}$ Catskill, NY 12414 518-678-9581 800-528-DISH - National 800-831-DISH - NY Only

[^4]: "Available from Ham Radio's Bookstore, Greenville, New Hampshire 03048, $\$ 9.95$ plus $\$ 2.50$ shipping and handling.
 ham radio

[^5]: AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
 CLEARWATER, FL 33575
 813-461-4267
 Clearwater Branch
 West Coast's only full service
 Amateur Radio Store.
 Hours M-F 9-5:30, Sat. 9-3

[^6]: 2900 N.W. VIVION ROAD
 KANSAS CITY. MISSOURI 64150 816-741-8118
 CALL TOLL FREE
 1-800-821-7323
 MASTEACARD VISA \& CODS WELCOME

[^7]: -Please contact this advertiser directly.

